Browse By:

Statistical Modelling of Road Traffic KSI Car Accidents in England (STATS19)

Sheikh, Mohammad M R (2022) Statistical Modelling of Road Traffic KSI Car Accidents in England (STATS19). International Journal of Mathematics and Statistics Studies, 10 (4). pp. 14-47. ISSN 2053-2229 (Print), 2053-2210 (Online)

[thumbnail of Statistical Modelling.pdf] Text
Statistical Modelling.pdf - Published Version
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (3MB) | Request a copy

Abstract

Several generalised linear models for counts (i.e., Poisson Model) as well as for binary response (i.e., Binary Logistic Model) and ordinal response (i.e., Ordinal Logistic Model) depending on selected multiple explanatory factors (discrete/ categorical) were developed for the road KSI car accidents in England based on STATS19 data (that were manipulated and several new factors were created), after exploratory exploration of discrete/ dichotomous/ nominal/ ordinal factors applied graphical EDA techniques followed by univariate ANOVA/ ANCOVA as well as MANOVA/ MANCOVA based on same selected multiple explanatory factors. Only the main effects as well as two-way interactions were investigated. Majority of main effects and several interaction effects in GLM models were found statistically significant with greater or lesser likelihood of having consequences. The statistically significant KSI car accident factors were identified and quantified for leading to aims to reduce as well as to prevent the car accident, particularly the killed or seriously injured car accidents. It also leads to inform the policymakers on how best to reduce the number and severity of car crashes.

Item Type: Article
Subjects: Q Science > QA Mathematics
Depositing User: Professor Mark T. Owen
Date Deposited: 08 Sep 2022 08:56
Last Modified: 08 Sep 2022 08:56
URI: https://tudr.org/id/eprint/945

Actions (login required)

View Item
View Item
UNSPECIFIED UNSPECIFIED