
European Journal of Computer Science and Information Technology

Vol.10, No.1, pp.23-37, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

23
@ECRTD-UK- https://www.eajournals.org/
 https://doi.org/10.37745/ejcsit.2013

A SYSTEMATIC LITERATURE REVIEW OF SOFTWARE VULNERABILITY

DETECTION

Adanma Cecilia Eberendu1, Valentine Ikechukwu Udegbe1, Edmond Onwubiko

Ezennorom1, Anita Chinonso Ibegbulam1, Titus Ifeanyi Chinebu2
1Department of Computer Science, Madonna University, Nigeria, Elele, Rivers State, Nigeria

2Department of Physical Sciences, Federal College of Dental Technology and Therapy, P. M. B.

01473 Trans Ekulu Enugu, Nigeria.

Citation: Adanma Cecilia Eberendu, Valentine Ikechukwu Udegbe, Edmond Onwubiko Ezennorom, Anita

Chinonso Ibegbulam, Titus Ifeanyi Chinebu (2022) A Systematic Literature Review of Software Vulnerability

Detection, European Journal of Computer Science and Information Technology, Vol.10, No.1, pp.23-37

ABSTRACT: This study provided a systematic literature review of software vulnerability

detection (SVD) by searching ACM and IEEE databases for related literatures. Using the

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart, a total

of 55 studies published in the selected journals and conference proceeding of IEEE and ACM from

2015 to 2021 were reviewed. The objective is to identify, select and critically evaluate research

works carried out on software vulnerability detection. The selected articles were grouped into 7

categories across various vulnerability detection evaluation criteria such as neural network – 5

papers, machine learning – 11 papers, static and dynamic analysis – 8 papers, code clone – 3

papers, classification – 4 papers, models – 3 papers, and frameworks – 6 papers. There are 15

articles that could not fall into any of these 7 categories, thus, they were place in others row that

used different criteria to implement vulnerability detection. The result showed that many

researchers used machine learning strategy to detect vulnerability in software since large volume

of data can be reviewed easily with machine learning. Although many systems have been developed

for detecting software vulnerability, none is able to show the type of vulnerability detected.

KEYWORDS: vulnerability, software vulnerability, vulnerability detection, software

vulnerability detection

INTRODUCTION

Software Vulnerability Detection (SVD) consists of flaws, bugs, errors, faults, weakness, defects,

malicious codes, or system errors which hackers used to alter the performance or normal behaviour

of the system (Barabanov et al., 2018). As the number of software systems increases so also the

number of vulnerabilities. Considering that most devices are visible to multiple users on the

internet, it will not take time for any launched attack to result to unpredictable damages and cost.

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.1, pp.23-37, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

24
@ECRTD-UK- https://www.eajournals.org/
 https://doi.org/10.37745/ejcsit.2013

According to Jurn et al (2018), software vulnerabilities involve coding errors in program that cause

undesirable actions to occur in software. These coding errors can cause the system to crash,

connectivity to fail, prevent users from login, upgrade user privileges, grant access to unauthorized

user, and printing errors. All software is vulnerable especially operating systems, web

browsers, word processors and spreadsheets, video and audio players, embedded systems, and

firmware according to Ibrahim et al (2019). Amankwah et al (2017) said that software vulnerability

can be local or remote. Local vulnerabilities occur where access is local while remote

vulnerabilities executes code on a remote machine and maliciously send it to network traffic or

files.

Software vulnerability detection, according to Su et al (2016) is a process of discovering code

snippets that have weaknesses which attackers might use to gain unauthorized access into the

system thereby compromising the software or the platform on which the system runs. Software

vulnerability is a thing of concern for software development organizations and end users of the

product. Already, report on software vulnerability is on the increase, as such focus has been shifted

to software vulnerability detection, monitoring and prevention. Many organizations have taken

time to report vulnerabilities in software annually. For instance, US-CERT (2020) showed that the

number of vulnerabilities in 2018 (17,252) and 2019 (17,382) is lower than 18,362 vulnerabilities

reported in the National Vulnerability Database (NVD) in 2020. It was also noted that most

companies encountered enormous losses due to vulnerability in software. For instance, more than

500,000 passwords were stolen from Zoom in April 2020 (Winder, 2020). In the same 2020,

Leswing (2020) reported that twitter suffered a scam that swindled 121,000 US dollars in 400

Bitcoin transaction. Already, over 12,500 vulnerabilities were reported during the second quarter

of 2021 (Greig, 2021).

Buffer flow is one of the causes of software vulnerability in which a program receives excess data

that corrupts memory space and alter other data causing the program to flag errors or behave

abnormally (Jurn et al 2018). This might give a hacker full control of the computer system (Jang

& Choi, 2018). Also, Gupta and Gupta (2017) saw cross-site scripting as error that causes

vulnerability by injecting malicious scripts into the websites or web application of unsuspected

user with the intention of executing it on the user’s system. The execution of the software is

triggered from the hacker’s browser. SQL injection occurs when an attacker gains unauthorized

access with the queries send by an application to the database so that he (an attacker) can be able

to create, insert, modify or delete records in the database. (Alwan & Younis, 2017). Braz et al

2021 discovered that unvalidated input also triggers vulnerability in software system once a

program receives input from untrusted sources that causes the program to misbehave or corrupt

the entire system. IP fragmentation attack instigates vulnerability in systems too (Leite &

Albuquerque, 2018). The packets are fragmented in such a way that they are impossible to

reassembly giving attacker loophole to carry out their nefarious attacks. Race condition

vulnerability occurs when multiple users access a software resource concurrently. Farah et al,

(2017) discovered that an attacker can take advantage of the gap between the Time-Of-Check and

Time-Of-Use to gain access to the system, thus making it vulnerable.

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.1, pp.23-37, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

25
@ECRTD-UK- https://www.eajournals.org/
 https://doi.org/10.37745/ejcsit.2013

Typically, the major purpose of an attacker is to gain access to a system and take control of its

valuable information for personal benefit (Jang & Choi, 2018). In the work of Barabanov et al.

(2016), they discovered that the development of new hacking techniques by hackers has resulted

to increased number of vulnerabilities detection. It will be worthwhile for software developers and

the users to be aware of how to detect and prevent vulnerabilities in software systems. Many

research works have been carried out in this regard but none has comprehensively carried out a

systematic literature review (SLR) of software vulnerability detection. This work tries to bridge

this gap by systematically reviewing the research works based on the following research questions:

1. What is the number of research studies that deal with software vulnerability detection?

2. What are the contents the authors addressed in the study of software vulnerability

detection?

3. What is the trend of software vulnerability detection from 2015 to 2021?

4. What are the main approaches used for detecting software vulnerability?

METHODOLOGY

Search strategy

For this systematic search, we developed a search strategy to identify relevant literature and this

was tailored to two databases: IEEE and ACM and also a manual search in google search engine.

This search was carried out on April 11, 2021. The search term used are “software vulnerability”

and “software vulnerability detection”. All search concentrated on papers published between 2015

and 2021, giving a 5 years span and this included peer-review papers in journal articles and

conference proceedings published in English. Only the AND operator was used during the search

because it will generate the required result. Example of the keyword used in the search is:

“software AND vulnerability AND detection” and also “software AND vulnerability”. OR

operator was avoided because it will generate large result which might not be necessary.

Selection criteria

The selection criteria were based on the Preferred Reporting Items for Systematic Reviews and

Meta-Analyses (PRISMA) statement (Moher et al 2009), which was used for the literature

screening to form the basis for the review and the search mainly focus on the mapping existing

literatures on software vulnerability in the field of Computer Science, Software Engineering,

Information Systems and Information Technology. The search then narrowed down to software

development and security spanning articles from 2015 to 2021. All articles before 2015 were

excluded from the search and the interest is on those published in English language and those in

other languages were also excluded. A total of 174 papers were considered and 119 of them were

excluded while 55 articles were extracted using this PRISMA method. Exclusion involved 93

research studies due to duplicate appearance, while 14 were screened out due to irrelevant title and

abstract. Ongoing through the full text, it was also discovered that 12 of the remaining studies are

illegible due to the content.

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.1, pp.23-37, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

26
@ECRTD-UK- https://www.eajournals.org/
 https://doi.org/10.37745/ejcsit.2013

Fig 1: Overview of Systematic review using PRISMA flow chart (Moher et al,2009)

Quality Assessment

To maintain the quality of the review, all duplicates were checked thoroughly and removed.

Abstract were deeply crosschecked for the analysis and purification of the articles to ensure the

quality and relevance of the academic literatures included in the review process. A careful

evaluation of each research paper was carried out at a later stage. The next exclusion criterium was

to limit the papers in the review process for those published in English language only. After the

filtration of the duplicate records, 119 articles were removed from the study and 55 articles were

selected after assessing each article on the aforementioned inclusion and exclusion criteria. The

number of selected research papers for analysis and their year of publication is graphically depicted

in figure 2 below.

Records screened by

Title/Abstract n=67

ACM

Full text article screened

for eligibility n=55

Studies included in

the SLR n =55

Records

excluded n=14

Full text article

excluded n= 12

Records after

removing of duplicates

n= 81

IEEE Manual Search

Records identified
through database

n=174

Id
en

tificatio
n

Screen

in
g

Eligib
ility

In
clu

sio
n

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.1, pp.23-37, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

27
@ECRTD-UK- https://www.eajournals.org/
 https://doi.org/10.37745/ejcsit.2013

Fig 2: Number of selected papers and year of publication

It worth noting that the research papers selected are those published in renowned databases and

discovered that the authors have used one of the methods, techniques, or tools to prove the result

of their research.

Data Extraction

In the data extraction phase, 55 articles were selected and the characteristics for the selection are

as follows:

1. Articles must be original papers, peer-reviewed papers or conference papers, but published

reports and case studies were excluded.

2. The article must be in English language and from the field Computer Science, Software

Engineering, Information Systems, or Information Technology.

3. Extracted articles were published between 2015 and 2021 from the IEEE and ACM

databases only

The extraction of data is developed to solve the research questions based on the research type,

research contents, and approaches for software vulnerability detection. The synthesis of the data

is carried as tabulated in table 1.

0

2

4

6

8

10

12

14

N
u

m
b

er
 o

f
P

ap
er

s

Publication Year

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.1, pp.23-37, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

28
@ECRTD-UK- https://www.eajournals.org/
 https://doi.org/10.37745/ejcsit.2013

Table 1: Pattern for Data extraction and synthesis

Data/Article Description Objective

Source IEEE and ACM Document

Type Journal or Conference Proceedings

Research Type Experiment, Development, Evaluation, Proposal, and

Validation

Document

Content addressed in Vulnerability

Detections

Modelling, design RQ2

Trend of Vulnerability Detection Metrics, tools, and algorithms RQ3

Approaches for vulnerability

detection

Neural network, machine learning, code clone, static

& dynamic analysis, model & Framework, etc.

RQ4

Taxonomy of Software

vulnerability

Characteristics, causes Extracts

Analysis and Results

The analysis and results section explain the literature evolution and the contents analysis. The

literature evolution discussed the journals published between 2015 and 2021 while the content

analysis focused on the approaches as categorized in table 2 below.

Table 2: Content analysis based on authors and approaches for detecting vulnerability in software

S/no Category References Number

1 Neural Network Majumder et al 2019; Tang et al 2020; Zheng et al 2019; Mao

et al, 2020; Liu et al 2020; Damien et al 2019

5

2 Code Clone Hu et al 2017; Liu et al 2019a; Kim et al 2017 3

3 Static and Dynamic

analysis

Ruggahakotuwa et al 2019; Pereira et al 2020; Spoto et al 2019;

Russell et al 2018; Ibrahim et al 2019; Nong and Cai 2020;

Chernis and Verma 2018; Li et al 2018

8

4 Machine Learning Liu et al 2020; Liu et al, 2019b; Zou et al 2021; Zeng et al 2020;

Lin et al 2018; Zheng et al 2021; Nguyen et al 2019; Ji et al

2018; Russell et al 2018; Li and Shao 2019; Kumar et al 2019;

Zagane et al 2020; Liu et al 2018; Wu et al 2021; Grieco and

Dinaburg (2018); Lin et al. (2019)

16

5 Models & Frameworks Wang et al 2015; Bagri & Gupta, 2019; Min et al 2019; Wang

et al 2020; Zarakovitis et al 2021; Li et al January, 2017; Li et

al August 2017; Li et al., September 2017; Jinan et al 2017.

9

6 Uncategorized Braz et al 2021; Ruohonen et al 2016; Qi 2021; Obaida et al

2017; Trabelsi et al 2015; Kapur 2017; Zhang et al 2020;

Kostromitin et al 2020; Li et al 2021; Zhang et al 2017;

Wibowo et al 2017; Sultana and Williams 2017; Ziems and Wu

2021; Paradis et al, 2018; Han et al 2019; Choi et al 2020

16

 Forty-three papers were published in conference, symposium, or workshop proceedings while

only twelve were published in monthly or quarterly journal. The research works are distributed

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.1, pp.23-37, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

29
@ECRTD-UK- https://www.eajournals.org/
 https://doi.org/10.37745/ejcsit.2013

into seven categories to aid the analysis and achieve the objectives. The references are included to

help future research works that may carry out further investigation. Thus, considering the forms

of software vulnerability detection, a mind map of SVD is depicted in figure 1. The subsections

showed the taxonomy of the available software vulnerability detection approaches based on the

analysis of the existing literature.

The automated software vulnerability detection using neural networks was addressed by five

researchers. They proposed artificial neural network (Majumder et al 2019; Tang et al 2020),

recurrent neural network (Zheng et al 2019; Mao et al, 2020), or deep neural network (Liu et al

2020). Damien et al (2019) designed a tool to automatically perform application code mutations

that imitate the activity of malicious code in an application. Three researchers used binary code

clone to detect vulnerability in software. Hu et al (2017) used a semantics-based approach while

Liu et al 2019a used deep learning-based approach and Kim et al (2017) used vulnerable code

clone approach. Ruggahakotuwa et al (2019) and seven other researchers used static and dynamic

analysis to perform vulnerability detection in software. Pereira (2020) combined static code

analysis methods with software metrics to enhance the capability of detecting vulnerability in

software. Spoto et al (2019) used static analyzers for cybersecurity to identify overt flows

of infected data in Java code. Russell et al (2018) leveraged the capability of C and C++ open-

source code but Ibrahim et al (2019) used static analysis vulnerability scanner to analyze open

source PHP applications in GitHub. Nong and Cai (2020) based their arguments on (static and/or

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.1, pp.23-37, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

30
@ECRTD-UK- https://www.eajournals.org/
 https://doi.org/10.37745/ejcsit.2013

dynamic) for memory vulnerability detectors. Chernis and Verma (2018) used static analysis to

trap significant percentage of flaws from functions in C source code. Li et al (2018) designed

integrated testing framework for static analysis methods and dynamic mining tool.

The potentials of machine learning and deep learning technologies are the most popular technique

used to develop systems for SVD. Liu et al (2020) used deep learning technology to design a

system for Cross Domain Software Vulnerability Discovery, while Liu et al, (2019a) proposed

deep learning approach to design automatic vulnerability detection in binary code. Zou et al (2021)

also developed a deep learning-based system for multiclass vulnerability detection to identify

vulnerabilities in code. Zeng et al (2020) in their study reviewed research works that employed

deep learning to detect software vulnerability. Those that used machine learning features are Lin

et al (2018) who addressed issues when high quality training data is in deficit. Zheng et al (2021)

evaluated vulnerability detection on source codes while Nguyen et al (2019) used machine learning

to design SCDAN (Semi-supervised Code Domain Adaptation Network) that will predict the

vulnerability detection performance. Ji et al (2018) investigated the capability of machine learning

but Russell et al (2018) used machine learning and the features of C and C++ to develop

vulnerability detection system. Li and Shao (2019) made use of the features of machine learning

to analyze the problems and challenges of software vulnerability detection. Kumar et al (2019)

used machine learning algorithms to develop a system for detecting software vulnerability. Zagane

et al (2020) linked the ideas of using deep learning to machine learning features and discussed a

deep-learning-based approach that used code metrics for detecting software vulnerabilities. Liu et

al (2018) and Wu et al (2021) developed automated methods for detecting vulnerabilities in

software while Grieco and Dinaburg (2018) used integrated tools to develop a system that is

capable of detecting vulnerabilities in source code. Lin et al. (2019) used machine learning

approach that used cross-domain data source to develop a framework to improve vulnerability

detection performance.

Six of the research works developed framework to automate vulnerability detection in software

product (Wang et al 2015; Bagri & Gupta, 2019; Min et al 2019; Li et al 2017; Wang et al 2020;

Zarakovitis et al 2021). Min et al (2019) designed an Android software vulnerability mining

framework based on dynamic taint analysis technology. Li et al (January, 2017) based their studies

on software vulnerability classification, causes, and characteristics. The work of Li et al (August

2017) proposed using data mining techniques to develop vulnerability detection model and in their

further study, they (Li et al., September 2017) used extended chemical abstract to design a new

vulnerability model. Jinan et al (2017) reviewed research works carried out on vulnerability

enumeration, taxonomy, models, and detection methods.

The other 15 researchers that dealt on different issues of vulnerability detection are Braz et al

(2021) that investigated the main causes of Improper Input Validation (IIV) and its late detection,

Ruohonen et al (2016) examined time delays through network analysis between software

vulnerability disclosure notifications and acknowledgments, and Qi (2021) implemented the

adaptive vulnerability information detection protocol. Obaida et al (2017) proposed Secure

Sensitive Data (SSD) Eclipse IDE plug-in to bridge the gap in sensitive data leaks while Trabelsi

et al 2015 investigated the Twitter feed. Kapur (2017) used dis-adoption process to model

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.1, pp.23-37, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

31
@ECRTD-UK- https://www.eajournals.org/
 https://doi.org/10.37745/ejcsit.2013

vulnerability patch and Zhang et al (2020) developed integrated testing and evaluation system

(iTES) to evaluate the techniques of software vulnerability detection. Kostromitin et al (2020)

discovered that hardware implementation of undocumented instructions causes unstable

functioning of critical objects. Security threats are prominent in software reused libraries due to its

propagation throughout development phases as such Li et al (2021) developed PDGraph to expose

the risk. Zhang et al (2017) utilized semi-symbolic Fuzz testing method to uncover hard-to-reach

vulnerabilities in programs. Wibowo et al (2017) investigated the Architectural Vulnerability

Factor (AVF) of all major in-core memory structures of an out-of-order superscalar processor

while Sultana and Williams (2017) used micro patterns detect vulnerability in software. Ziems and

Wu (2021) and Paradis et al, (2018) modelled test as a source code and used it for software

vulnerability detection in natural language processing (NLP), Han et al (2019) proposed a static

detection model, while Choi et al (2020) developed Cyber-Physical Inconsistency to target

vulnerability detection in Robotic Vehicles (RVs).

CONCLUSION

Systematic review of works done on software vulnerability detection used different techniques

such as machine learning and deep learning, neural network, binary code clone, static and dynamic

analysis, methods and framework analysis to detect vulnerability in software products. Based on

this systematic literature review, machine learning and deep learning approaches were mostly used

to detect vulnerability in software because every domain is driven nowadays by machine learning

application and many researchers are venturing into it. Static and dynamic analysis was also used

extensively to detect vulnerability in software. Some developed techniques for detecting

vulnerability were unable to show the type of vulnerability detected and this is an issue for

discussion in subsequent study. The result of this systematic literature review was evaluated using

PRISMA guidelines (Page et al, 2021).

References

Alwan, Z. S., and Younis, M. F. (2017). Detection and prevention of SQL injection attack: A

survey. International Journal of Computer Science and Mobile Computing, 6(8), 5-17.

Amankwah, R., Kudjo, P.K. and Antwi, S. Y. (2017) Evaluation of Software Vulnerability

Detection Methods and Tools: A Review. International Journal of Computer Applications

169(8), Pp 22-27.

Bagri, B., and Gupta, G. (2019, October). Automation Framework for Software Vulnerability

Exploitability Assessment. In 2019 Global Conference for Advancement in Technology

(GCAT) (pp. 1-7). IEEE.

Barabanov, A. V, Markov, A. S. and Tsirlov, V. L. (2018) Statistics of software vulnerability

detection in certification testing. International Conference Information Technologies in

Business and Industry IOP Conf. Series: Journal of Physics: Conf. Series 1015 042033

Barabanov, A. V., Markov, A. S. and Tsirlov, V. L. (2016) Methodological framework for analysis

and synthesis of a set of secure software development controls Journal of Theoretical and

Applied Information Technology 88(1), 77-88

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.1, pp.23-37, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

32
@ECRTD-UK- https://www.eajournals.org/
 https://doi.org/10.37745/ejcsit.2013

Braz, L., Fregnan, E., Çalikli, G., and Bacchelli, A. (2021, May). Why Don’t Developers Detect

Improper Input Validation?’; DROP TABLE Papers; --. In 2021 IEEE/ACM 43rd

International Conference on Software Engineering (ICSE) (pp. 499-511). IEEE.

Chernis, B., and Verma, R. (2018, March). Machine learning methods for software vulnerability

detection. In Proceedings of the Fourth ACM International Workshop on Security and

Privacy Analytics (pp. 31-39).

Choi, H., Kate, S., Aafer, Y., Zhang, X., and Xu, D. (2020, October). Cyber-physical inconsistency

vulnerability identification for safety checks in robotic vehicles. In Proceedings of the 2020

ACM SIGSAC Conference on Computer and Communications Security (pp. 263-278).

Damien, A., Feyt, N., Nicomette, V., Alata, E., and Kaâniche, M. (2019, September). Attack

injection into avionic systems through application code mutation. In 2019 IEEE/AIAA 38th

Digital Avionics Systems Conference (DASC) (pp. 1-8). IEEE.

Farah, T., Shelim, R., Zaman, M., Hassan, M. M., and Alam, D. (2017). Study of race condition:

A privilege escalation vulnerability. In WMSCI 2017-21st World Multi-Conference Syst.

Cybern. Informatics, Proc (Vol. 2, pp. 100-105).

Grieco, G., and Dinaburg, A. (2018, January). Toward Smarter Vulnerability Discovery Using

Machine Learning. In Proceedings of the 11th ACM Workshop on Artificial Intelligence

and Security (pp. 48-56).

Greig, J. (2021). More than 12,500 vulnerabilities disclosed in first half of 2021: Risk Based

Security. Retrieved on 30 august, 2021 from https://www.zdnet.com/article/

Gupta, S., and Gupta, B. B. (2017). Cross-Site Scripting (XSS) attacks and defense mechanisms:

classification and state-of-the-art. International Journal of System Assurance Engineering

and Management, 8(1), 512-530.

Han, L., Zhou, M., Qian, Y., Fu, C., and Zou, D. (2019). An Optimized Static Propositional

Function Model to Detect Software Vulnerability. IEEE Access, 7, 143499-143510.

Hu, Y., Zhang, Y., Li, J., and Gu, D. (2017, May). Binary code clone detection across architectures

and compiling configurations. In 2017 IEEE/ACM 25th International Conference on

Program Comprehension (ICPC) (pp. 88-98). IEEE.

Ibrahim, A., El-Ramly, M., and Badr, A. (2019, November). Beware of the Vulnerability! How

Vulnerable are GitHub's Most Popular PHP Applications? In 2019 IEEE/ACS 16th

International Conference on Computer Systems and Applications (AICCSA) (pp. 1-7).

IEEE.

Jang, Y. S., and Choi, J. Y. (2018). Automatic prevention of buffer overflow vulnerability using

candidate code generation. IEICE TRANSACTIONS on Information and Systems, 101(12),

3005-3018.

Ji, T., Wu, Y., Wang, C., Zhang, X., and Wang, Z. (2018, June). The coming era of alpha-hacking:

A survey of automatic software vulnerability detection, exploitation and patching

techniques. In 2018 IEEE third international conference on data science in cyberspace

(DSC) (pp. 53-60). IEEE.

Jinan, S., Kefeng, P., Xuefeng, C., and Junfu, Z. (2017, May). Security Patterns from Intelligent

Data: A Map of Software Vulnerability Analysis. In 2017 IEEE 3rd international

conference on big data security on cloud (bigdatasecurity), ieee international conference

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.1, pp.23-37, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

33
@ECRTD-UK- https://www.eajournals.org/
 https://doi.org/10.37745/ejcsit.2013

on high performance and smart computing (hpsc), and ieee international conference on

intelligent data and security (ids) (pp. 18-25). IEEE.

Jurn, J., Kim T. and Kim H. (2018) An Automated Vulnerability Detection and Remediation

Method for Software Security Sustainability 1652(10), 1-12

Kapur, P. K. (2017, December). User based fault detection, vulnerability discovery and patching:

An interdisciplinary research. In 2017 International Conference on Infocom Technologies

and Unmanned Systems (Trends and Future Directions) (ICTUS) (pp. 27-33). IEEE.

Kim, S., Woo, S., Lee, H., and Oh, H. (2017, May). Vuddy: A scalable approach for vulnerable

code clone discovery. In 2017 IEEE Symposium on Security and Privacy (SP) (pp. 595-

614). IEEE.

Kostromitin, K. I., Dokuchaev, B. N., and Kozlov, D. A. (2020, September). Analysis of the Most

Common Software and Hardware Vulnerabilities in Microprocessor Systems. In 2020

International Russian Automation Conference (RusAutoCon) (pp. 1031-1036). IEEE.

Kumar, A., and Lim, T. J. (2019, April). EDIMA: early detection of IoT malware network activity

using machine learning techniques. In 2019 IEEE 5th World Forum on Internet of Things

(WF-IoT) (pp. 289-294). IEEE.

Leite, G. S., and Albuquerque, A. B. (2018, September). An Approach for Reduce Vulnerabilities

in Web Information Systems. In Proceedings of the Computational Methods in Systems

and Software (pp. 86-99). Springer, Cham.

Leswing, K. (2020). Twitter hackers who targeted Elon Musk and others received $121,000 in

bitcoin: analysis shows. Retrieved on 30 August, 2021 from

https://www.cnbc.com/2020/07/16/

Li, J., Chen, J., Huang, M., Zhou, M., Xie, W., Zeng, Z., ... and Zhang, Z. (2018). An integration

testing framework and evaluation metric for vulnerability mining methods. China

Communications, 15(2), 190-208.

Li, Q., Song, J., Tan, D., Wang, H., and Liu, J. (2021, June). PDGraph: A Large-Scale Empirical

Study on Project Dependency of Security Vulnerabilities. In 2021 51st Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN) (pp. 161-173).

IEEE.

Li, X., Chang, X., Board, J. A., and Trivedi, K. S. (2017, January). A novel approach for software

vulnerability classification. In 2017 Annual Reliability and Maintainability Symposium

(RAMS) (pp. 1-7). IEEE.

Li, X., Chen, J., Lin, Z., Zhang, L., Wang, Z., Zhou, M., and Xie, W. (2017, August). A mining

approach to obtain the software vulnerability characteristics. In 2017 Fifth International

Conference on Advanced Cloud and Big Data (CBD) (pp. 296-301). IEEE.

Li, X., Chen, J., Lin, Z., Zhang, L., Wang, Z., Zhou, M., and Xie, W. (2017, September). A new

method to construct the software vulnerability model. In 2017 2nd IEEE International

Conference on Computational Intelligence and Applications (ICCIA) (pp. 225-229). IEEE.

Li, Z., and Shao, Y. (2019, February). A survey of feature selection for vulnerability prediction

using feature-based machine learning. In Proceedings of the 2019 11th International

Conference on Machine Learning and Computing (pp. 36-42).

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.1, pp.23-37, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

34
@ECRTD-UK- https://www.eajournals.org/
 https://doi.org/10.37745/ejcsit.2013

Lin, G., Zhang, J., Luo, W., Pan, L., De Vel, O., Montague, P., and Xiang, Y. (2019). Software

vulnerability discovery via learning multi-domain knowledge bases. IEEE Transactions on

Dependable and Secure Computing.

Lin, G., Zhang, J., Luo, W., Pan, L., Xiang, Y., De Vel, O., and Montague, P. (2018). Cross-project

transfer representation learning for vulnerable function discovery. IEEE Transactions on

Industrial Informatics, 14(7), 3289-3297.

Liu, D., Wang, J., Rong, Z., Mi, X., Gai, F., Tang, Y., and Wang, B. (2018, August). Pangr: A

Behavior-Based Automatic Vulnerability Detection and Exploitation Framework. In 2018

17th IEEE International Conference on Trust, Security and Privacy in Computing and

Communications/12th IEEE International Conference on Big Data Science and

Engineering (TrustCom/BigDataSE) (pp. 705-712). IEEE.

Liu, S., Dibaei, M., Tai, Y., Chen, C., Zhang, J., and Xiang, Y. (2019). Cyber vulnerability

intelligence for Internet of Things binary. IEEE Transactions on Industrial

Informatics, 16(3), 2154-2163.

Liu, S., Lin, G., Han, Q. L., Wen, S., Zhang, J., and Xiang, Y. (2019). DeepBalance: Deep-learning

and fuzzy oversampling for vulnerability detection. IEEE Transactions on Fuzzy

Systems, 28(7), 1329-1343.

Liu, S., Lin, G., Qu, L., Zhang, J., De Vel, O., Montague, P., and Xiang, Y. (2020). CD-VulD:

Cross-domain vulnerability discovery based on deep domain adaptation. IEEE

Transactions on Dependable and Secure Computing.

Majumder, R., Som, S., and Gupta, R. (2017, December). Vulnerability prediction through self-

learning model. In 2017 International Conference on Infocom Technologies and

Unmanned Systems (Trends and Future Directions) (ICTUS) (pp. 400-402). IEEE.

Mao, Y., Li, Y., Sun, J., and Chen, Y. (2020, December). Explainable Software vulnerability

detection based on Attention-based Bidirectional Recurrent Neural Networks. In 2020

IEEE International Conference on Big Data (Big Data) (pp. 4651-4656). IEEE.

Min, Z., Haimin, Y., Ping, C., and Zhengxing, Y. (2019, March). Android software vulnerability

mining framework based on dynamic taint analysis technology. In 2019 IEEE 3rd

Information Technology, Networking, Electronic and Automation Control Conference

(ITNEC) (pp. 2112-2115). IEEE.

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., and Prisma Group. (2009). Preferred reporting

items for systematic reviews and meta-analyses: the PRISMA statement. PLoS

medicine, 6(7), e1000097.

Nguyen, V., Le, T., Le, T., Nguyen, K., DeVel, O., Montague, P., ... and Phung, D. (2019, July).

Deep domain adaptation for vulnerable code function identification. In 2019 International

Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.

Nong, Y., and Cai, H. (2020, February). A preliminary study on open-source memory vulnerability

detectors. In 2020 IEEE 27th International Conference on Software Analysis, Evolution

and Reengineering (SANER) (pp. 557-561). IEEE.

Obaida, M. A., Nelson, E., Ee, R. V., Jahan, I., and Sajal, S. Z. (2017, May). Interactive sensitive

data exposure detection through static analysis. In 2017 IEEE International Conference on

Electro Information Technology (EIT) (pp. 270-275). IEEE.

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.1, pp.23-37, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

35
@ECRTD-UK- https://www.eajournals.org/
 https://doi.org/10.37745/ejcsit.2013

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... and

Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting

systematic reviews. Bmj, 372.

Paradis, C., Kazman, R., and Wang, P. (2018, December). Indexing text related to software

vulnerabilities in noisy communities through topic modelling. In 2018 17th IEEE

International Conference on Machine Learning and Applications (ICMLA) (pp. 763-768).

IEEE.

Pereira, J. D. A. (2020, October). Techniques and Tools for Advanced Software Vulnerability

Detection. In 2020 IEEE International Symposium on Software Reliability Engineering

Workshops (ISSREW) (pp. 123-126). IEEE.

Qi, X. I. O. N. G. (2021, March). Generation technology of multimedia application software defect

data for group users. In 2021 IEEE 2nd International Conference on Big Data, Artificial

Intelligence and Internet of Things Engineering (ICBAIE) (pp. 18-23). IEEE.

Ruggahakotuwa, L., Rupasinghe, L., and Abeygunawardhana, P. (2019, December). Code

Vulnerability Identification and Code Improvement using Advanced Machine Learning.

In 2019 International Conference on Advancements in Computing (ICAC) (pp. 186-191).

IEEE.

Ruohonen, J., Holvitie, J., Hyrynsalmi, S., and Leppänen, V. (2016, November). Exploring the

clustering of software vulnerability disclosure notifications across software vendors.

In 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications

(AICCSA) (pp. 1-8). IEEE.

Russell, R., Kim, L., Hamilton, L., Lazovich, T., Harer, J., Ozdemir, O., ... and McConley, M.

(2018, December). Automated vulnerability detection in source code using deep

representation learning. In 2018 17th IEEE international conference on machine learning

and applications (ICMLA) (pp. 757-762). IEEE.

Spoto, F., Burato, E., Ernst, M. D., Ferrara, P., Lovato, A., Macedonio, D., and Spiridon, C. (2019).

Static identification of injection attacks in Java. ACM Transactions on Programming

Languages and Systems (TOPLAS), 41(3), 1-58.

Sultana, K. Z., & Williams, B. J. (2017, November). Evaluating micro patterns and software

metrics in vulnerability prediction. In 2017 6th International Workshop on Software

Mining (SoftwareMining) (pp. 40-47). IEEE.

Tang, G., Meng, L., Wang, H., Ren, S., Wang, Q., Yang, L., and Cao, W. (2020, December). A

comparative study of neural network techniques for automatic software vulnerability

detection. In 2020 International Symposium on Theoretical Aspects of Software

Engineering (TASE) (pp. 1-8). IEEE.

Trabelsi, S., Plate, H., Abida, A., Ben Aoun, M.M., Zouaoui, A., Missaoui, C., Gharbi, S., and

Ayari, A. (2015) Monitoring software vulnerabilities through social networks analysis. In

proceeding of the 12th International Joint Conference on e-Business and

Telecommunications (ICETE). 4 (pp. 236-242)

US-Cert (2020). Vulnerabilities Exploited in 2020. From

https://www.cisa.gov/uscert/ncas/alerts/aa20-133a accessed on July 27,2021.

https://www.eajournals.org/
https://www.cisa.gov/uscert/ncas/alerts/aa20-133a

European Journal of Computer Science and Information Technology

Vol.10, No.1, pp.23-37, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

36
@ECRTD-UK- https://www.eajournals.org/
 https://doi.org/10.37745/ejcsit.2013

Wang, H., Ye, G., Tang, Z., Tan, S. H., Huang, S., Fang, D., ... and Wang, Z. (2020). Combining

graph-based learning with automated data collection for code vulnerability detection. IEEE

Transactions on Information Forensics and Security, 16, 1943-1958.

Wang, X., Ma, H., Yang, K., and Liang, H. (2015, November). An Uneven Distributed System for

Dynamic Taint Analysis Framework. In 2015 IEEE 2nd International Conference on

Cyber Security and Cloud Computing (pp. 237-240). IEEE.

Wibowo, B., Agrawal, A., and Tuck, J. (2017, October). Characterizing the impact of soft errors

across microarchitectural structures and implications for predictability. In 2017 IEEE

International Symposium on Workload Characterization (IISWC) (pp. 250-260). IEEE.

Winder, D. (2020) Zoom Gets Stuffed: Here’s How Hackers Got Hold Of 500,000 Passwords.

Retrieved on August 30, 2021 from

https://www.forbes.com/sites/daveywinder/2020/04/28/

Wu, Y., Lu, J., Zhang, Y., and Jin, S. (2021, January). Vulnerability Detection in C/C++ Source

Code with Graph Representation Learning. In 2021 IEEE 11th Annual Computing and

Communication Workshop and Conference (CCWC) (pp. 1519-1524). IEEE.

Su, Y., Li, M., Tang, C., and Shen, R. (2016) An Overview of Software Vulnerability Detection.

International Journal of Computer Science and technology 7(3)

Zagane, M., Abdi, M. K., and Alenezi, M. (2020). Deep learning for software vulnerabilities

detection using code metrics. IEEE Access, 8, 74562-74570.

Zarakovitis, C., Klonidis, D., Salazar, Z., Prudnikova, A., Bozorgchenani, A., Ni, Q., ... and

Mallouli, W. (2021, August). SANCUS: Multi-layers Vulnerability Management

Framework for Cloud-native 5G networks. In The 16th International Conference on

Availability, Reliability and Security (pp. 1-10).

Zeng, P., Lin, G., Pan, L., Tai, Y., and Zhang, J. (2020). Software Vulnerability Analysis and

Discovery using Deep Learning Techniques: A Survey. IEEE Access.

Zhang, B., Ye, J., Feng, C., and Tang, C. (2017, December). S2F: discover hard-to-reach

vulnerabilities by semi-symbolic fuzz testing. In 2017 13th International Conference on

Computational Intelligence and Security (CIS) (pp. 548-552). IEEE.

Zhang, C., Chen, J., Cai, S., Liu, B., Wu, Y., and Geng, Y. (2020, December). iTES: Integrated

Testing and Evaluation System for Software Vulnerability Detection Methods. In 2020

IEEE 19th International Conference on Trust, Security and Privacy in Computing and

Communications (TrustCom) (pp. 1455-1460). IEEE.

Zheng, J., Pang, J., Zhang, X., Zhou, X., Li, M., and Wang, J. (2019, December). Recurrent Neural

Network Based Binary Code Vulnerability Detection. In Proceedings of the 2019 2nd

International Conference on Algorithms, Computing and Artificial Intelligence (pp. 160-

165).

Zheng, W., Semasaba, A. O. A., Wu, X., Agyemang, S. A., Liu, T., and Ge, Y. (2021, March).

Representation vs. Model: What Matters Most for Source Code Vulnerability Detection.

In 2021 IEEE International Conference on Software Analysis, Evolution and

Reengineering (SANER) (pp. 647-653). IEEE.

Ziems, N., and Wu, S. (2021). Security Vulnerability Detection Using Deep Learning Natural

Language Processing. arXiv preprint arXiv:2105.02388.

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.1, pp.23-37, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

37
@ECRTD-UK- https://www.eajournals.org/
 https://doi.org/10.37745/ejcsit.2013

Zou, D., Wang, S., Xu, S., Li, Z., and Jin, H. (2019). μVulDeePecker: A deep learning-based

system for multiclass vulnerability detection. IEEE Transactions on Dependable and

Secure Computing. 18(5) (pp.2224-2236)

https://www.eajournals.org/

