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ABSTRACT: This study provided a systematic literature review of software vulnerability 

detection (SVD) by searching ACM and IEEE databases for related literatures. Using the 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart, a total 

of 55 studies published in the selected journals and conference proceeding of IEEE and ACM from 

2015 to 2021 were reviewed. The objective is to identify, select and critically evaluate research 

works carried out on software vulnerability detection. The selected articles were grouped into 7 

categories across various vulnerability detection evaluation criteria such as neural network – 5 

papers, machine learning – 11 papers, static and dynamic analysis – 8 papers, code clone – 3 

papers, classification – 4 papers, models – 3 papers, and frameworks – 6 papers. There are 15 

articles that could not fall into any of these 7 categories, thus, they were place in others row that 

used different criteria to implement vulnerability detection. The result showed that many 

researchers used machine learning strategy to detect vulnerability in software since large volume 

of data can be reviewed easily with machine learning. Although many systems have been developed 

for detecting software vulnerability, none is able to show the type of vulnerability detected. 

KEYWORDS: vulnerability, software vulnerability, vulnerability detection, software 

vulnerability detection 

 

INTRODUCTION  

Software Vulnerability Detection (SVD) consists of flaws, bugs, errors, faults, weakness, defects, 

malicious codes, or system errors which hackers used to alter the performance or normal behaviour 

of the system (Barabanov et al., 2018). As the number of software systems increases so also the 

number of vulnerabilities. Considering that most devices are visible to multiple users on the 

internet, it will not take time for any launched attack to result to unpredictable damages and cost. 
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According to Jurn et al (2018), software vulnerabilities involve coding errors in program that cause 

undesirable actions to occur in software. These coding errors can cause the system to crash, 

connectivity to fail, prevent users from login, upgrade user privileges, grant access to unauthorized 

user, and printing errors. All software is vulnerable especially operating systems, web 

browsers, word processors and spreadsheets, video and audio players, embedded systems, and 

firmware according to Ibrahim et al (2019). Amankwah et al (2017) said that software vulnerability 

can be local or remote. Local vulnerabilities occur where access is local while remote 

vulnerabilities executes code on a remote machine and maliciously send it to network traffic or 

files. 

Software vulnerability detection, according to Su et al (2016) is a process of discovering code 

snippets that have weaknesses which attackers might use to gain unauthorized access into the 

system thereby compromising the software or the platform on which the system runs. Software 

vulnerability is a thing of concern for software development organizations and end users of the 

product. Already, report on software vulnerability is on the increase, as such focus has been shifted 

to software vulnerability detection, monitoring and prevention. Many organizations have taken 

time to report vulnerabilities in software annually. For instance, US-CERT (2020) showed that the 

number of vulnerabilities in 2018 (17,252) and 2019 (17,382) is lower than 18,362 vulnerabilities 

reported in the National Vulnerability Database (NVD) in 2020. It was also noted that most 

companies encountered enormous losses due to vulnerability in software. For instance, more than 

500,000 passwords were stolen from Zoom in April 2020 (Winder, 2020). In the same 2020, 

Leswing (2020) reported that twitter suffered a scam that swindled 121,000 US dollars in 400 

Bitcoin transaction. Already, over 12,500 vulnerabilities were reported during the second quarter 

of 2021 (Greig, 2021). 

Buffer flow is one of the causes of software vulnerability in which a program receives excess data 

that corrupts memory space and alter other data causing the program to flag errors or behave 

abnormally (Jurn et al 2018). This might give a hacker full control of the computer system (Jang 

& Choi, 2018). Also, Gupta and Gupta (2017) saw cross-site scripting as error that causes 

vulnerability by injecting malicious scripts into the websites or web application of unsuspected 

user with the intention of executing it on the user’s system. The execution of the software is 

triggered from the hacker’s browser. SQL injection occurs when an attacker gains unauthorized 

access with the queries send by an application to the database so that he (an attacker) can be able 

to create, insert, modify or delete records in the database. (Alwan & Younis, 2017).  Braz et al 

2021 discovered that unvalidated input also triggers vulnerability in software system once a 

program receives input from untrusted sources that causes the program to misbehave or corrupt 

the entire system. IP fragmentation attack instigates vulnerability in systems too (Leite & 

Albuquerque, 2018). The packets are fragmented in such a way that they are impossible to 

reassembly giving attacker loophole to carry out their nefarious attacks. Race condition 

vulnerability occurs when multiple users access a software resource concurrently. Farah et al, 

(2017) discovered that an attacker can take advantage of the gap between the Time-Of-Check and 

Time-Of-Use to gain access to the system, thus making it vulnerable. 
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Typically, the major purpose of an attacker is to gain access to a system and take control of its 

valuable information for personal benefit (Jang & Choi, 2018). In the work of Barabanov et al. 

(2016), they discovered that the development of new hacking techniques by hackers has resulted 

to increased number of vulnerabilities detection. It will be worthwhile for software developers and 

the users to be aware of how to detect and prevent vulnerabilities in software systems. Many 

research works have been carried out in this regard but none has comprehensively carried out a 

systematic literature review (SLR) of software vulnerability detection. This work tries to bridge 

this gap by systematically reviewing the research works based on the following research questions: 

1. What is the number of research studies that deal with software vulnerability detection?  

2. What are the contents the authors addressed in the study of software vulnerability 

detection?  

3. What is the trend of software vulnerability detection from 2015 to 2021? 

4. What are the main approaches used for detecting software vulnerability? 

METHODOLOGY 

Search strategy 

For this systematic search, we developed a search strategy to identify relevant literature and this 

was tailored to two databases: IEEE and ACM and also a manual search in google search engine. 

This search was carried out on April 11, 2021. The search term used are “software vulnerability” 

and “software vulnerability detection”. All search concentrated on papers published between 2015 

and 2021, giving a 5 years span and this included peer-review papers in journal articles and 

conference proceedings published in English. Only the AND operator was used during the search 

because it will generate the required result. Example of the keyword used in the search is: 

“software AND vulnerability AND detection” and also “software AND vulnerability”. OR 

operator was avoided because it will generate large result which might not be necessary. 

Selection criteria 

The selection criteria were based on the Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA) statement (Moher et al 2009), which was used for the literature 

screening to form the basis for the review and the search mainly focus on the mapping existing 

literatures on software vulnerability in the field of Computer Science, Software Engineering, 

Information Systems and Information Technology. The search then narrowed down to software 

development and security spanning articles from 2015 to 2021. All articles before 2015 were 

excluded from the search and the interest is on those published in English language and those in 

other languages were also excluded. A total of 174 papers were considered and 119 of them were 

excluded while 55 articles were extracted using this PRISMA method. Exclusion involved 93 

research studies due to duplicate appearance, while 14 were screened out due to irrelevant title and 

abstract. Ongoing through the full text, it was also discovered that 12 of the remaining studies are 

illegible due to the content. 
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Fig 1: Overview of Systematic review using PRISMA flow chart (Moher et al,2009) 

Quality Assessment 

To maintain the quality of the review, all duplicates were checked thoroughly and removed. 

Abstract were deeply crosschecked for the analysis and purification of the articles to ensure the 

quality and relevance of the academic literatures included in the review process. A careful 

evaluation of each research paper was carried out at a later stage. The next exclusion criterium was 

to limit the papers in the review process for those published in English language only. After the 

filtration of the duplicate records, 119 articles were removed from the study and 55 articles were 

selected after assessing each article on the aforementioned inclusion and exclusion criteria. The 

number of selected research papers for analysis and their year of publication is graphically depicted 

in figure 2 below. 
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Fig 2: Number of selected papers and year of publication 

It worth noting that the research papers selected are those published in renowned databases and 

discovered that the authors have used one of the methods, techniques, or tools to prove the result 

of their research. 

Data Extraction 

In the data extraction phase, 55 articles were selected and the characteristics for the selection are 

as follows: 

1. Articles must be original papers, peer-reviewed papers or conference papers, but published 

reports and case studies were excluded. 

2. The article must be in English language and from the field Computer Science, Software 

Engineering, Information Systems, or Information Technology. 

3. Extracted articles were published between 2015 and 2021 from the IEEE and ACM 

databases only 

The extraction of data is developed to solve the research questions based on the research type, 

research contents, and approaches for software vulnerability detection. The synthesis of the data 

is carried as tabulated in table 1. 
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Table 1: Pattern for Data extraction and synthesis  

Data/Article Description Objective 

Source IEEE and ACM Document 

Type Journal or Conference Proceedings  

Research Type Experiment, Development, Evaluation, Proposal, and 

Validation 

Document 

Content addressed in Vulnerability 

Detections 

Modelling, design RQ2 

Trend of Vulnerability Detection  Metrics, tools, and algorithms  RQ3 

Approaches for vulnerability 

detection 

Neural network, machine learning, code clone, static 

& dynamic analysis, model & Framework, etc. 

RQ4 

Taxonomy of Software 

vulnerability 

Characteristics, causes Extracts  

 

Analysis and Results 

The analysis and results section explain the literature evolution and the contents analysis. The 

literature evolution discussed the journals published between 2015 and 2021 while the content 

analysis focused on the approaches as categorized in table 2 below. 

Table 2: Content analysis based on authors and approaches for detecting vulnerability in software 

S/no Category References Number 

1 Neural Network Majumder et al 2019; Tang et al 2020; Zheng et al 2019; Mao 

et al, 2020; Liu et al 2020; Damien et al 2019 

5 

2 Code Clone Hu et al 2017; Liu et al 2019a; Kim et al 2017 3 

3 Static and Dynamic 

analysis 

Ruggahakotuwa et al 2019; Pereira et al 2020; Spoto et al 2019; 

Russell et al 2018; Ibrahim et al 2019; Nong and Cai 2020; 

Chernis and Verma 2018; Li et al 2018 

8 

4 Machine Learning Liu et al 2020; Liu et al, 2019b; Zou et al 2021; Zeng et al 2020; 

Lin et al 2018; Zheng et al 2021; Nguyen et al 2019; Ji et al 

2018; Russell et al 2018; Li and Shao 2019; Kumar et al 2019; 

Zagane et al 2020; Liu et al 2018; Wu et al 2021; Grieco and 

Dinaburg (2018); Lin et al. (2019) 

16 

5 Models & Frameworks Wang et al 2015; Bagri & Gupta, 2019; Min et al 2019; Wang 

et al 2020; Zarakovitis et al 2021; Li et al January, 2017; Li et 

al August 2017; Li et al., September 2017; Jinan et al 2017. 

 

9 

6 Uncategorized   Braz et al 2021; Ruohonen et al 2016; Qi 2021; Obaida et al 

2017; Trabelsi et al 2015; Kapur 2017; Zhang et al 2020; 

Kostromitin et al 2020; Li et al 2021; Zhang et al 2017; 

Wibowo et al 2017; Sultana and Williams 2017; Ziems and Wu 

2021; Paradis et al, 2018; Han et al 2019; Choi et al 2020  

16 

 

 Forty-three papers were published in conference, symposium, or workshop proceedings while 

only twelve were published in monthly or quarterly journal. The research works are distributed 
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into seven categories to aid the analysis and achieve the objectives. The references are included to 

help future research works that may carry out further investigation.  Thus, considering the forms 

of software vulnerability detection, a mind map of SVD is depicted in figure 1. The subsections 

showed the taxonomy of the available software vulnerability detection approaches based on the 

analysis of the existing literature. 

 

The automated software vulnerability detection using neural networks was addressed by five 

researchers. They proposed artificial neural network (Majumder et al 2019; Tang et al 2020), 

recurrent neural network (Zheng et al 2019; Mao et al, 2020), or deep neural network (Liu et al 

2020). Damien et al (2019) designed a tool to automatically perform application code mutations 

that imitate the activity of malicious code in an application.  Three researchers used binary code 

clone to detect vulnerability in software. Hu et al (2017) used a semantics-based approach while 

Liu et al 2019a used deep learning-based approach and Kim et al (2017) used vulnerable code 

clone approach. Ruggahakotuwa et al (2019) and seven other researchers used static and dynamic 

analysis to perform vulnerability detection in software. Pereira (2020) combined static code 

analysis methods with software metrics to enhance the capability of detecting vulnerability in 

software. Spoto et al (2019) used static analyzers for cybersecurity to identify overt flows 

of infected data in Java code. Russell et al (2018) leveraged the capability of C and C++ open-

source code but Ibrahim et al (2019) used static analysis vulnerability scanner to analyze open 

source PHP applications in GitHub. Nong and Cai (2020) based their arguments on (static and/or 

https://www.eajournals.org/


European Journal of Computer Science and Information Technology 

Vol.10, No.1, pp.23-37, 2022 

Print ISSN: 2054-0957 (Print),  

                                                                                              Online ISSN: 2054-0965 (Online) 

30 
@ECRTD-UK- https://www.eajournals.org/                                            
 https://doi.org/10.37745/ejcsit.2013   

dynamic) for memory vulnerability detectors. Chernis and Verma (2018) used static analysis to 

trap significant percentage of flaws from functions in C source code. Li et al (2018) designed 

integrated testing framework for static analysis methods and dynamic mining tool.  

The potentials of machine learning and deep learning technologies are the most popular technique 

used to develop systems for SVD. Liu et al (2020) used deep learning technology to design a 

system for Cross Domain Software Vulnerability Discovery, while Liu et al, (2019a) proposed 

deep learning approach to design automatic vulnerability detection in binary code.  Zou et al (2021) 

also developed a deep learning-based system for multiclass vulnerability detection to identify 

vulnerabilities in code. Zeng et al (2020) in their study reviewed research works that employed 

deep learning to detect software vulnerability. Those that used machine learning features are Lin 

et al (2018) who addressed issues when high quality training data is in deficit. Zheng et al (2021) 

evaluated vulnerability detection on source codes while Nguyen et al (2019) used machine learning 

to design SCDAN (Semi-supervised Code Domain Adaptation Network) that will predict the 

vulnerability detection performance. Ji et al (2018) investigated the capability of machine learning 

but Russell et al (2018) used machine learning and the features of C and C++ to develop 

vulnerability detection system.  Li and Shao (2019) made use of the features of machine learning 

to analyze the problems and challenges of software vulnerability detection.  Kumar et al (2019) 

used machine learning algorithms to develop a system for detecting software vulnerability. Zagane 

et al (2020) linked the ideas of using deep learning to machine learning features and discussed a 

deep-learning-based approach that used code metrics for detecting software vulnerabilities.  Liu et 

al (2018) and Wu et al (2021) developed automated methods for detecting vulnerabilities in 

software while Grieco and Dinaburg (2018) used integrated tools to develop a system that is 

capable of detecting vulnerabilities in source code. Lin et al. (2019) used machine learning 

approach that used cross-domain data source to develop a framework to improve vulnerability 

detection performance.  

Six of the research works developed framework to automate vulnerability detection in software 

product (Wang et al 2015; Bagri & Gupta, 2019; Min et al 2019; Li et al 2017; Wang et al 2020; 

Zarakovitis et al 2021). Min et al (2019) designed an Android software vulnerability mining 

framework based on dynamic taint analysis technology. Li et al (January, 2017) based their studies 

on software vulnerability classification, causes, and characteristics. The work of Li et al (August 

2017) proposed using data mining techniques to develop vulnerability detection model and in their 

further study, they (Li et al., September 2017) used extended chemical abstract to design a new 

vulnerability model. Jinan et al (2017) reviewed research works carried out on vulnerability 

enumeration, taxonomy, models, and detection methods. 

The other 15 researchers that dealt on different issues of vulnerability detection are Braz et al 

(2021) that investigated the main causes of Improper Input Validation (IIV) and its late detection, 

Ruohonen et al (2016) examined time delays through network analysis between software 

vulnerability disclosure notifications and acknowledgments, and Qi (2021) implemented the 

adaptive vulnerability information detection protocol. Obaida et al (2017) proposed Secure 

Sensitive Data (SSD) Eclipse IDE plug-in to bridge the gap in sensitive data leaks while Trabelsi 

et al 2015 investigated the Twitter feed. Kapur (2017) used dis-adoption process to model 
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vulnerability patch and Zhang et al (2020) developed integrated testing and evaluation system 

(iTES) to evaluate the techniques of software vulnerability detection. Kostromitin et al (2020) 

discovered that hardware implementation of undocumented instructions causes unstable 

functioning of critical objects. Security threats are prominent in software reused libraries due to its 

propagation throughout development phases as such Li et al (2021) developed PDGraph to expose 

the risk.  Zhang et al (2017) utilized semi-symbolic Fuzz testing method to uncover hard-to-reach 

vulnerabilities in programs. Wibowo et al (2017) investigated the Architectural Vulnerability 

Factor (AVF) of all major in-core memory structures of an out-of-order superscalar processor 

while Sultana and Williams (2017) used micro patterns detect vulnerability in software. Ziems and 

Wu (2021) and Paradis et al, (2018) modelled test as a source code and used it for software 

vulnerability detection in natural language processing (NLP), Han et al (2019) proposed a static 

detection model, while Choi et al (2020) developed Cyber-Physical Inconsistency to target 

vulnerability detection in Robotic Vehicles (RVs). 

CONCLUSION  

Systematic review of works done on software vulnerability detection used different techniques 

such as machine learning and deep learning, neural network, binary code clone, static and dynamic 

analysis, methods and framework analysis to detect vulnerability in software products. Based on 

this systematic literature review, machine learning and deep learning approaches were mostly used 

to detect vulnerability in software because every domain is driven nowadays by machine learning 

application and many researchers are venturing into it. Static and dynamic analysis was also used 

extensively to detect vulnerability in software. Some developed techniques for detecting 

vulnerability were unable to show the type of vulnerability detected and this is an issue for 

discussion in subsequent study. The result of this systematic literature review was evaluated using 

PRISMA guidelines (Page et al, 2021).  
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