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ABSTRACT: Software-Defined Networking (SDN) is an architecture purporting to be dynamic, 

manageable cost-effective, and adaptable, seeking to be suitable for the high bandwidth, dynamic nature 

of today’s applications. SDN architectures decouple network control and forwarding functions enabling 

the network control to become directly programmable and the underlying infrastructure to be abstract 

from application and network services. In this paper, the advantages and challenges of Software-

Defined Networking (SDN) are discussed.However, the Software Defined Networking application (SDN 

App) and the application of SDN are also discussed in detail. 
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INTRODUCTION 

 

A wise variety of applications with diverse requirements on the network services has been enabled by 

rapid advancement in networking and computing technologies [1]The highly diverse and dynamic 

network services demanded by current and emerging applications bring in new challenges to service 

provisioning in future networks. Software-defined networking (SDN) and network functions 

virtualization (NFV) are two significant recent innovations that are expected to address these challenges 

[1]. 

Software-defined networking (SDN) has gained a lot of attention in recent years, because it addresses 

the lack of programmability in existing networking architectures and enables easier and faster network 

innovation. SDN clearly separates the data plane from the control plane and facilitates software 

implementations of complex networking applications on top [2]. 

 

SDN separates network control and data forwarding functionalities to enable centralized and 

programmable network control [1]. Key components of the SDN architecture include a data plane 

consisting of network resources for data forwarding, a control plane comprising SDN controller(s) 

providing centralized control of network resources, and control/management applications that program 

network operations through a controller. The control-resource interface between the control and data 

planes is called the southbound interface, while the control-application interface is called the northbound 

inter-face. Advantages promised by SDN include simplified and enhanced network control, flexible and 

efficient network management, and improved network service performance. 

 

Network virtualization introduces an abstraction of the underlying infrastructure upon which virtual 

networks with alternative architecture may be constructed to meet diverse service requirements [3]. 

More recently, the European Tele-Communications Standards Institute (ETSI) developed NFV.The 

Software-Defined Networking is a new networking paradigm that tries to improve flexibility, and 

programmability and reduces management complexity by separating the control plane from the data 

plane [4], [5]. By having a centralized control plane, it is possible to have a global view of the network 

providing the opportunity for simplified control applications. However, as with any centralized 

architecture, scalability can become a major performance degrading factor as the network grows in size. 

Therefore, understanding the scalability issues is extremely important in the design of carrier-grade 

SDNs and their widespread adoption. Towards this end, some studies, predominantly experimental in 

https://www.eajournals.org/


 
 

European Journal of Computer Science and Information Technology 

Vol.10, No.2, pp.27-48, 2022 

Print ISSN: 2054-0957 (Print),  

                                                                                                                      Online ISSN: 2054-0965 (Online) 

28 

@ECRTD-UK- https://www.eajournals.org/                                            

 
 

nature, have been carried out. Yeganeh et al. [3] points out several scalability concerns and argue that 

they are not specific to SDNs. In [4], the authors evaluated the first SDN controller, NOX, and reported 

that it can only serve 30,000 flow initiation requests while maintaining the flow setup time of less than 

10 msec. The scalability of different control plane architectures (centralized, de-centralized and 

hierarchical) is compared using simple queuing models in [5]. Solutions ranging from a distributed 

controller architecture [6] to moving some control functions back to the switches [7] are proposed to 

alleviate the scalability issues. 

 

In the context of SDNs, scalability has always been evaluated based on the number of flow initiation 

requests that can be supported while guaranteeing a Quality of Service (QoS) factor such as the flow 

setup time1. While the above metric for scalability is important, it is more appropriate for static networks 

and does not capture issues that surface when the network topology changes frequently. 

 

Characterizing the throughput loss due to topology changes is hard without detailed information about 

the topology. However, we can use, as a first approximation, the level of inconsistency between the 

controller’s view of the topology and the actual network as a proxy for the throughput degradation [10]. 

Note that having a link in the actual network, but not in the controller’s view of the topology, is not an 

issue because the flow table will not have that additional link [11]. However, the inconsistency caused 

by a link failure could lead to throughput degradation if that link is present in the path of an already 

established flow. It is straight-forward to compute the expected flow setup time when the size of a 

network in terms of the number of switches and links is known. In this paper, we define scalability as 

the number of switches that can be controlled while maintaining the inconsistency below a certain 

number of links and maintaining the expected flow setup time below a certain threshold when the links 

are characterized by the distributions of their lifetimes and down-times [10]. 

 

REVIEW OF RELEVANT LITERATURE 

 

The past few years have witnessed exciting progress in SDN technologies and their applications in 

various networking scenarios [12], including wireless networks [14]. On the other hand, researchers 

have noticed some issues of the current SDN approach that may limit its ability to fully support future 

network services [15, 16]. To meet the evolving diverse service requirements, SDN data plane devices 

need to fully perform general flow matching and packet forwarding, which may significantly increase 

complexity and cost of SDN switches. On the control plane, current SDN architecture lacks sufficient 

support of interoperability among heterogeneous SDN controllers, and thus limits its ability to provision 

flexible end-to-end services across autonomous domains. 

 

A root reason for the limitation of current SDN design to achieve its full potential for service 

provisioning is the tight coupling between network architecture and infrastructure on both data and 

control planes. Separation between data and control planes alone in the current SDN architecture is not 

sufficient to overcome this obstacle. Another dimension of abstraction to decouple service functions and 

network infra-structures is needed in order to unlock SDN’s full potential. Therefore, applying the 

insights of NFV in SDN may further enhance the latter’s capability of flexible service provisioning. 

 

On the other hand, many technical challenges must be addressed for realizing the NFV paradigm. 

Management and orchestration have been identified as key components in the ETSI NFV architecture. 

Much more sophisticated control and management mechanisms for both virtual and physical resources 

are required by the highly dynamic networking environment enabled by NFV, in which programmatic 

network control is indispensable. Employing the SDN principle — decoupling control intelligence from 
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the controlled resources to enable a logically centralized programmable control/management plane — 

in the NFV architecture may greatly facilitate realization of NFV [17]. 

 

Recent research efforts toward combining SDN and NFV to enhance network service provisioning have 

been made from various aspects. Hypervisor and container-based virtualization mechanisms have been 

applied to support multi-tenant virtual SDN networks. For example, the network hypervisor Flow-Visor 

[18] allows multiple controllers to share an Open Flow platform and slice data plane infrastructure. 

FlowN [18] offers container-based virtualization solution in which each tenant may run its own control 

application on a shared SDN controller. Some network system designs have explored utilizing 

capabilities of both SDN and NFV. For example, Woods et al. [19] presented NetVM, a high-

performance virtual server platform for supporting NFV, and discussed design guidelines for combining 

SDN controllers with NetVM to provide coordinated network management. Ding et al. [10] designed an 

open platform for service chain as a service by using capabilities of SDN together with NFV. The 

progressive evolution from SDN-agnostic NFV initiative to SDN-enabled NFV solution was discussed 

in [11]. Relevant standardization organizations are also actively conducting the related study. The Open 

Network Foundation (ONF) recently released a report on the relationship of SDN and NFV [20], and 

ETSI NFV ISG is currently 

 

 

 

 
 

 

Figure 1.2 A two-dimensional model of layer-plane abstraction in future networking. 

 

Recent research efforts toward combining SDN and NFV to enhance network service provisioning have 

been made from various aspects. Hypervisor and container-based virtualization mechanisms have been 

applied to support multi-tenant virtual SDN networks. For example, the network hypervisor Flow-Visor 

[17] allows multiple controllers to share an OpenFlow platform and slice data plane infrastructure. 

FlowN [18] offers a container-based virtualization solution in which each tenant may run its own control 

application on a shared SDN controller. Some network system designs have explored utilizing 

capabilities of both SDN and NFV. For example, Woods et al. [19] presented NetVM, a high-

performance virtual server platform for supporting NFV, and discussed design guidelines for combining 

SDN controllers with NetVM to provide coordinated network management. Ding et al. [20] designed an 

open platform for service chain as a service by using capabilities of SDN together with NFV. The 

progressive evolution from SDN-agnostic NFV initiative to SDN-enabled NFV solution was discussed 

in [21]. Relevant standardization organizations are also actively conducting the related study. The Open 
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Network Foundation (ONF) recently released a report on the relationship of SDN and NFV [12], and 

ETSI NFV ISG is currently working on a draft report regarding SDN usage in the NFV architecture [23]. 

Although encouraging progress has been made toward combining SDN and NFV, research in this area 

is still in its infant stage. Current works address the problem from various aspects, including hypervisors 

for virtual SDN networks, usage of SDN controllers in NFV architecture, and SDN/NFV hybrid 

solutions for service provisioning. It is desirable to have a high-level framework that provides a holistic 

vision of how SDN and NFV principles may naturally fit into unified network architecture, which may 

greatly facilitate the research and technical development in this area. This motivates the work presented 

in the rest of this article. 

 

A Two-Dimensional Abstraction Model for SDN and NFV Integration In this section, we present a two- 

dimensional abstraction model to show how SDN and NFV principles are related to each other and how 

they may fit in unified network architecture. 

 

As shown in Fig. 1.2, this abstraction model has layers as well as planes with clear distinction between 

these two concepts. Both layers and planes offer abstraction in network architecture but in different 

dimensions. Abstraction provided by layers is in the vertical dimension in the model, starting with 

underlying hardware and then adding a sequence of layers, each providing a higher (more abstract) level 

of service. A key property of layering is that the functions of a higher layer rely on the services provided 

by the lower layers, therefore forming a stack of layers for offering services to applications on the top. 

On the other hand, plane abstraction is in the horizontal dimension in that functions performed on a 

plane do not necessarily rely on functions of another plane; therefore, there is no higher or lower plane. 

Instead, each plane focuses on a particular aspect of the entire network system, such as data transport, 

network control, and system management. Each plane may comprise multiple layers from physical 

hardware to application software and collaborates with other planes for network service provisioning. 

Traditional circuit-switching-based telecommunication systems embraced plane-dimension abstraction 

(separating data, control, and management planes) without clear abstraction on the layer dimension. For 

example, Signal System No. 7 was logically separated from voice channels, and the intelligent network 

(IN) had service control points (SCPs) decoupled from the data transportation platform [24]. 

 

PROTOCOL OPTIONS FOR THE SOUTHBOUND INTERFACE 

 

The most common southbound interface is Open Flow, which is standardized by the Open Networking 

Foundation (ONF). Open Flow is a protocol that describes the interaction of one or more control servers 

with Open Flow-compliant switches. An Open Flow controller installs flow table entries in switches, so 

that these switches can forward traffic according to these entries. Thus, Open Flow switches depend on 

configuration by controllers. A flow is classified by match fields that are similar to access control lists 

(ACLs) and may contain wildcards. In Section 3, we provide a detailed description of Open Flow and 

describe the features offered by different versions of the protocol. 

 

Another option for the southbound interface is the Forwarding and Control Element Separation 

(ForCES) [5,6] which is discussed and has been standardized by the Internet Engineering Task Force 

(IETF) since 2004. ForCES is also a framework, not only a protocol; the ForCES framework also 

separates the control plane and data plane, but is considered more flexible and more powerful than 

OpenFlow [7,8]. Forwarding devices are modeled using logical function blocks (LFB) that can be 

composed in a modular way to form complex forwarding mechanisms. Each LFB provides a given 
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functionality, such as IP routing. The LFBs model a forwarding device and cooperate to form even more 

complex network devices. Control elements use the ForCES protocol to configure the interconnected 

LFBs to modify the behavior of the forwarding elements. 

 

The Soft Router architecture [9] also defines separate control and data plane functionality. It allows 

dynamic bindings between control elements and data plane elements, which allows a dynamic 

assignment of control and data plane elements. In [9], the authors present the SoftRouter architecture 

and highlight its advantages on the Border Gateway Protocol (BGP) with regard to reliability. 

 

ForCES and Soft Router have similarities with OpenFlow and can fulfill the role of the southbound 

interface. Other networking technologies are also discussed, as well as possible southbound interfaces 

in the IETF. For instance, the Path Computation Element (PCE) [10] and the Locator/ID Separation 

Protocol (LISP) [11] are candidates for southbound interfaces. 

 

NORTHBOUND APIS FOR NETWORK APPLICATIONS 

 

As we will highlight in Section 3, the OpenFlow protocol provides an interface that allows a control 

software to program switches in the network. Basically, the controller can change the forwarding 

behavior of a switch by altering the forwarding table. Controllers often provide a similar interface to 

applications, which is called the northbound interface, to expose the programmability of the network. 

The northbound interface is not standardized and often allows fine-grained control of the switches. 

Applications should not have to deal with the details of the southbound interface, e.g., the application 

does not need to know all details about the network topology, etc. For instance, a traffic engineering 

network applications should tell the controller the path layout of the flows, but the controller should 

create appropriate commands to modify the forwarding tables of the switches. Thus, network 

programming languages are needed to ease and automate the configuration and management of the 

network. 

 

The requirements of a language for SDN are discussed in [12]. The authors focus on three important 

aspects. (1) The network programming language has to provide the means for querying the network 

state. The language runtime environment gathers the network state and statistics, which is then provided 

to the application; (2) The language must be able to express network policies that define the packet 

forwarding behavior. It should be possible to combine policies of different network applications. 

Network applications possibly construct conflicting network policies, and the network language should 

be powerful enough to express and to resolve such conflicts; (3) The reconfiguration of the network is a 

difficult task, especially with various network policies. The runtime environment has to trigger the 

update process of the devices to guarantee that access control is preserved, forwarding loops are avoided 

or other invariants are met. 

 

Popular SDN programming languages that fulfill the presented requirements are Frenetic [13], its 

successor, Pyretic [14], and Procera [15]. These languages provide a declarative syntax and are based 

on functional reactive programming. Due to the nature of functional reactive programming, these 

languages provide a composable interface for network policies. Various other proposals exist, as well. 

The European FP7 research project, NetIDE, addresses the northbound interfaces of SDN networks[16]. 

 

SDN, ACTIVE AND PROGRAMMABLE NETWORKS 

 

In the past, various technologies were developed to enable programmability in communication networks. 

Active networks (AN) [17] were developed in the 1990s. The basic idea of active networks is to inject 

https://www.eajournals.org/


 
 

European Journal of Computer Science and Information Technology 

Vol.10, No.2, pp.27-48, 2022 

Print ISSN: 2054-0957 (Print),  

                                                                                                                      Online ISSN: 2054-0965 (Online) 

32 

@ECRTD-UK- https://www.eajournals.org/                                            

 
 

programs into data packets. Switches extract and execute programs from data packets. With this method, 

new routing mechanisms and network services can be implemented without the modification of the 

forwarding hardware. However, this approach has not prevailed, due to security concerns and 

performance issues that can occur on executing programs in the forwarding devices. For example, an 

attacker can inject malicious programs into network packets and forward them into the network. 

 

Programmable networks (PN) [18,19] also provide a means for programmability in the network by 

executing programs on packets similar to AN. However, programs are not included in the data packets 

as with AN. The programs are installed inside the network nodes, which execute the programs on the 

packets. This clearly reduced security concerns that occur with AN, because a network node only accepts 

programs after a prior signaling and node setup. Various proposals for PN were made in the past. For 

example, xbind [20] was proposed for asynchronous transfer mode (ATM) networks that are tailored 

towards quality of service (QoS) and multimedia applications. The aim of xbind was to overcome the 

complexity associated with ATM and to allow easier service creation by separating the control 

algorithms from the ATM protocol, which was enabled by the programmability of the forwarding 

devices through programming languages. 

 

Both approaches, AN and PN, introduce new flexibility by allowing programs to be executed within the 

network. They are more flexible than an OpenFlow-based SDN approach, because they allow one to 

program the data plane in an extensible way. New data plane functionality can be implemented through 

programs that are either part of data packets with AN or installed inside network nodes with PN. An 

OpenFlow-based SDN approach cannot extend the data plane functionality without an upgrade of the 

switches, due to the fact that OpenFlow only provides a fixed set of network operations. The OpenFlow 

controller is only able to program the switch with its supported set of operations. 

 

SYSTEM DESCRIPTION 

 

In traditional IP networks, the packet routers are in charge of determining the routing policies and other 

control functions as well as forwarding the packets. That is, the control plane and data plane are tightly 

coupled in traditional networking architectures. The key idea behind SDNs is to separate the control 

plane, managed by a controller, from the data plane consisting of a set of forwarding elements or 

switches. The basic SDN architecture that separates control plane from data plane is shown in Fig. 1.6. 

In the figure, the services provided by the network operator, such as security, are termed as the 

application, and they communicate with the SDN controller using interfaces called northbound APIs 

[80] (for e.g., Procera and RESTFul [70]). The SDN controller controls and programs the switches to 

perform different functionality using APIs that are termed as southbound APIs (the most common 

interfaces are OpenFlow [9], ForCES, and NetConf [2]). 

 

We start by describing the flow setup process in SDNs. A more detailed description can be found in 

[10]. As a part of the start-up procedure, an SDN switch will communicate its IP address and all its 

available switch ports to the controller. When a packet from a new flow arrives, the switch first checks 

if there is an entry in its flow table corresponding to the packet it received. If there is no forwarding rule 

available in the flow table for the received packet, then the packet is forwarded to the controller (for 

example, in OpenFlow the packet is encapsulated in a Packet_In message). The controller, upon 

receiving the message from the switch, computes or fetches the pre-computed forwarding rules and 

installs them in all the concerned switches along the path of the flow. Once the forwarding rules are 

installed in the switches, the switches can forward packets without any intervention from the controller. 

The controller should have an up-to-date view of the network in order to compute and install appropriate 

control functions in the switches. If the controller’s view of the network is not consistent with the actual 
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topology, the forwarding rules installed by the controller could be incorrect and could lead to packet 

drops causing significant performance degradation. Therefore, the controller performs the topology 

discovery process periodically to update its view of the network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.6.  Architecture of a software defined network. 

 

 

THE OPENFLOW PROTOCOL 

 

The OpenFlow protocol is the most commonly used protocol for the southbound interface of SDN, which 

separates the data plane from the control plane. The white paper about OpenFlow [71] points out the 

advantages of a flexibly configurable forwarding plane. OpenFlow was initially proposed by Stanford 

University, and it is now standardized by the ONF [4]. In the following, we first give an overview of the 

structure of OpenFlow and then describe the features supported by the different specifications. 

 

Overview 

The OpenFlow architecture consists of three basic concepts. (110) The network is built up by OpenFlow-

compliant switches that compose the data plane; (102) the control plane consists of one or more 

OpenFlow controllers; (3) a secure control channel connects the switches with the control plane. In the 

following, we discuss OpenFlow switches and controllers and the interactions among them. 

 

An OpenFlow-compliant switch is a basic forwarding device that forwards packets according to its flow 

table. This table holds a set of flow table entries, each of which consists of match fields, counters and 

instructions, as illustrated in Figure 2. Flow table entries are also called flow rules or flow entries. The 

“header fields” in a flow table entry describe to which packets this entry is applicable. They consist of a 

wildcard-capable match over specified header fields of packets. To allow fast packet forwarding with 

OpenFlow, the switch requires ternary content addressable memory (TCAM) that allows the fast lookup 

of wildcard matches. The header fields can match different protocols depending on the OpenFlow. 

 

specification, e.g., Ethernet, IPv4, IPv6 or MPLS. The “counters” are reserved for collecting statistics 

about flows. They store the number of received packets and bytes, as well as the duration of the flow. 

The “actions” specify how packets of that flow are handled. Common actions are “forward”, “drop”, 

“modify field”, etc. 
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Header Fields Counters Action 

 

Figure 1.7.1. Flow table entry for OpenFlow 1.0. 

 

A software program, called the controller, is responsible for populating and manipulating the flow tables 

of the switches. By insertion, modification and removal of flow entries, the controller can modify the 

behavior of the switches with regard to forwarding. The OpenFlow specification defines the protocol 

that enables the controller to instruct the switches. To that end, the controller uses a secure control 

channel. 

 

Three classes of communication exist in the OpenFlow protocol: controller-to-switch, asynchronous and 

symmetric communication (90). The controller-to-switch communication is responsible for feature 

detection, configuration, programming the switch and information retrieval. Asynchronous 

communication is initiated by the OpenFlow-compliant switch without any solicitation from the 

controller. It is used to inform the controller about packet arrivals, state changes at the switch and errors. 

Finally, symmetric messages are sent without solicitation from either side, i.e., the switch or the 

controllers are free to initiate the communication without solicitation from the other side. Examples for 

symmetric communication are hello or echo messages that can be used to identify whether the control 

channel is still live and available (115). 

 

 
  Figure 1.7.2. Basic packet forwarding with OpenFlow in a switch. 

 

The basic packet forwarding mechanism with OpenFlow is illustrated in Figure 1.7.2. When a switch 

receives a packet, it parses the packet header, which is matched against the flow table. If a flow table 

entry is found where the header field wildcard matches the header, the entry is considered. If several 

such entries are found, packets are matched based on prioritization, i.e., the most specific entry or the 

wildcard with the highest priority is selected. Then, the switch updates the counters of that flow table 

entry. Finally, the switch performs the actions specified by the flow table entry on the packet, e.g., the 

switch forwards the packet to a port. Otherwise, if no flow table entry matches the packet header, the 

switch generally notifies its controller about the packet, which is buffered when the switch is capable of 

buffering. To that end, it encapsulates either the unbuffered packet or the first bytes of the buffered 

packet using a PACKET-IN message and sends it to the controller; it is common to encapsulate the 

packet header and the number of bytes defaults to 128. The controller that receives the PACKET-IN 

notification identifies the correct action for the packet and installs one or more appropriate entries in the 

requesting switch. Buffered packets are then forwarded according to the rules; this is triggered by setting 

the buffer ID in the flow insertion message or in explicit PACKET-OUT messages. Most commonly, 

the controller sets up the whole path for the packet in the network by modifying the flow tables of all 

switches on the path (96). 
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OpenFlow Specifications 

We now review the different OpenFlow specifications by highlighting the supported operations and the 

changes compared to their previous major version and summarize the features of the different versions. 

Finally, we briefly describe the OpenFlow Configuration and Management Protocol OF-CONFIG 

protocol, which adds configuration and management support to OpenFlow switches (84). 

 

OpenFlow 1.0 

The OpenFlow 1.0 specification [22] was released in December, 2009. As of this writing, it is the most 

commonly deployed version of OpenFlow. Ethernet and IP packets can be matched based on the source 

and destination address. In addition, Ethernet-type and VLAN fields can be matched for Ethernet, the 

differentiated services (DS) and Explicit Congestion Notification (ECN) fields, and the protocol field 

can be matched for IP. Moreover, matching on TCP or UDP source and destination port numbers is 

possible. 

 

Figure 1.7.2 illustrates the packet handling mechanism of OpenFlow 1.0. The OpenFlow standard 

exactly specifies the packet parsing and matching algorithm. The packet matching algorithm starts with 

a comparison of the Ethernet and VLAN fields and continues if necessary with IP header fields. If the 

IP type signals TCP or UDP, the corresponding transport layer header fields are considered. 

 

Several actions can be set per flow. The most important action is the forwarding action. This action 

forwards the packet to a specific port or floods it to all ports. In addition, the controller can instruct the 

switch to encapsulate all packets of a flow and send them to the controller. An action to drop packets is 

also available. This action enables the implementation of network access control with OpenFlow. 

Another action allows modifying the header fields of the packet, e.g., modification of the VLAN tag, IP 

source, destination addresses, etc. 

 

Statistics can be gathered using various counters in the switch. They may be queried by the controller. 

It can query table statistics that contain the number of active entries and processed packets. Statistics 

about flows are stored per flow inside the flow table entries. In addition, statistics per port and per queue 

are also available (73). 

 

OpenFlow 1.0 provides basic quality of service (QoS) support using queues, and OpenFlow 1.0 only 

supports minimum rate queues. An OpenFlow-compliant switch can contain one ore more queues, and 

each queue is attached to a port. An OpenFlow controller can query the information about queues of a 

switch. The “Enqueue” action enables forwarding to queues. Packets are treated according to the queue 

properties. Note that OpenFlow controllers are only able to query, but not to set, queue properties. The 

OF-CONFIG protocol allows one to modify the queue properties, but requires OpenFlow 1.2 and later. 

We present OF-CONFIG in Section 3.2.7. 

 

OpenFlow 1.1 

OpenFlow 1.1 [23] was released in February, 2011. It contains significant changes compared to 

OpenFlow 1.0. Packet processing works differently now. Packets are processed by a pipeline of multiple 

flow tables. Two major changes are introduced: a pipeline of multiple flow tables and a group table. 

 

We first explain the pipeline. With OpenFlow 1.0, the result of the packet matching is a list of actions 

that are applied to the packets of a flow. These actions are directly specified by flow table entries, as 

shown in Figures 1.7.5 and 1.7.6. With OpenFlow 1.1, the result of the pipeline is a set of actions that 

are accumulated during pipeline execution and are applied to the packet at the end of the pipeline. The 

OpenFlow table pipeline requires a new metadata field, instructions and action sets. The metadata field 
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may collect metadata for a packet during the matching process and carry them from one pipeline step to 

the next. Flow table entries contain instructions instead of actions, as shown in Figure 1.7.4. The list of 

possible instructions for OpenFlow 1.1 are given in Table 1. The “Apply-Actions” instruction directly 

applies actions to the packet. The specified actions are not added to the action set. The “Write-Actions” 

instruction adds the specified actions to the action set and allows for incremental construction of the 

action set during pipeline execution. The “Clear-Actions” instruction empties the action set (77). The 

“Write-Metadata” instruction updates the metadata field by applying the specified mask to the current 

metadata field. Finally, the “Goto” instruction refers to a flow table, and the matching process continues 

with this table. To avoid loops in the pipeline, only tables with a higher ID than the current table are 

allowed to be referenced. Thus, the matching algorithm will deterministically terminate. If no “Goto” 

instruction is specified, the pipeline processing stops, and the accumulated action set is executed on the 

packet (105). 

 

Header Fields Counters Instructions 

 

 

Figure 1.7.4. Flow table entry for OpenFlow 1.1 and later. 

 

Table 1. List of instructions for OpenFlow 1.1. 

 

 

Instruction Argument Semantic 

   

Apply-Actions Action(s) 

Applies actions immediately without adding them to the action 

set 

Write-Actions Action(s) Merge the specified action(s) into the action set 

Clear-Actions - Clear the action set 

Write-Metadata Metadata mask Updates the metadata field 

Goto-Table Table ID Perform matching on the next table 

   

 

Figure 1.7.5 illustrates the packet processing of the pipeline. Before the pipeline begins, the metadata 

field and the action set for a packet are initialized as empty. The matching process starts on the first flow 

table. The packet is matched against the consecutive flow tables from each of which the highest-priority 

matching flow table entry is selected. The pipeline ends when no matching flow table entry is found or 

no “Goto” instruction is set in the matching flow table entry. The pipeline supports the definition of 

complex forwarding mechanisms and provides more flexibility compared to the switch architecture of 

OpenFlow 1.0. 
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Figure 1.7.5. OpenFlow pipeline. 

 

The second major change is the addition of a group table. The group table supports more complex 

forwarding behaviors, which are possibly applied to a set of flows. It consists of group table entries, as 

shown in Figure 1.7.6. A group table entry may be performed if a flow table entry uses an appropriate 

instruction that refers to its group identifier. In particular, multiple flow table entries can point to the 

same group identifier, so that the group table entry is performed for multiple flows. 

 

 

 

Group Identifier    Group Type  Counters    Action Buckets 

 

 

Figure 1.7.6. Group table entries for OpenFlow 1.1 and later. 

 

The group table entry contains a group type, a counters field and a field for action buckets. The counters 

are used for collecting statistics about packets that are processed by this group. A single action bucket 

contains a set of actions that may be executed, depending on the group type. There are possibly multiple 

action buckets for a group table entry. The group types define which of them are applied. Four group 

types exist, and we illustrate the use of two of them. 

 

The group type “all” is used to implement broadcast and multicast. Packets of this group will be 

processed by all action buckets. The actions of each bucket are applied to the packet consecutively. For 

example, a group table entry with the type “all” contains two action buckets. The first bucket consists of 

the action “forward to Port 1”. The second bucket consists of the action “forward to Port 2”. Then, the 

switch sends the packet both to Port 1 and Port 2. 

 

The group type “fast failover” is used to implement backup paths. We first explain the concept of 

liveness for illustration purposes. An action bucket is considered live if all actions of the bucket are 

considered live. The liveness of an action depends on the liveness of its associated port. However, the 

liveness property of a port is managed outside of the OpenFlow protocol. The OpenFlow standard only 

specifies the minimum requirement that a port should not be considered live if the port or the link is 

down. A group with the type “fast failover” executes the first live action bucket, and we explain this by 

the following example. The primary path to a flow’s destination follows Port 3, while its backup path 

follows Port 4. This may be configured by a group table with the first action bucket containing the 

forwarding action towards Port 3 and a second action bucket containing the forwarding action towards 

Port 4. If Port 3 is up, packets belonging to this group are forwarded using Port 3; otherwise, they are 

forwarded using Port 4. Thus, the “fast failover” group type supports reroute decisions that do not require 

immediate controller interaction. Thus, a fast reroute mechanisms can be implemented that ensures 
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minimum packet loss in failure cases. Fast reroute mechanisms, such as the MPLS fast reroute [69] or 

the IP fast reroute [70] can be implemented with OpenFlow group tables. 

 

As an optional feature, OpenFlow 1.1 performs matching of MPLS labels and traffic classes. 

Furthermore, MPLS-specific actions, like pushing and popping MPLS labels, are supported. In general, 

the number of supported actions for OpenFlow 1.1 is larger than for OpenFlow 1.0. For example, the 

Time-To-Live (TTL) field in the IP header can be decremented, which is unsupported in OpenFlow 1.0. 

OpenFlow 1.1 provides additional statistics fields due to the changed switch architecture. Controllers 

can query statistics for the group table and group entries, as well as for action buckets (99). 

 

OpenFlow 1.2 

OpenFlow 1.2 [26] was released in December, 2011. It comes with extended protocol support, in 

particular for IPv6. OpenFlow 1.2 can match IPv6 source and destination addresses, protocol number, 

flow label, traffic class and various ICMPv6 fields. Vendors have new possibilities to extend OpenFlow 

by themselves to support additional matching capabilities. A type-length-value (TLV) structure, which 

is called OpenFlow Extensible Match (OXM), allows one to define new match entries in an extensible 

way (59). 

 

With OpenFlow 1.2, a switch may simultaneously be connected to more than a single controller, i.e., it 

can be configured to be administrated by a set of controllers. The switch initiates the connection, and 

the controllers accept the connection attempts. One controller is defined master and programs the switch. 

The other controllers are slaves. A slave controller can be promoted to the master role, while the master 

is demoted to the slave role. This allows for controller failover implementations (109). 

 

OpenFlow 1.3 

OpenFlow 1.3 [27] introduces new features for monitoring and operations and management (OAM). To 

that end, the meter table is added to the switch architecture. Figure 7 shows the structure of meter table 

entries. A meter is directly attached to a flow table entry by its meter identifier and measures the rate of 

packets assigned to it. A meter band may be used to rate-limit the associated packet or data rate by 

dropping packets when a specified rate is exceeded. Instead of dropping packets, a meter band may 

optionally recolor such packets by modifying their differentiated services (DS) field. Thus, simple or 

complex QoS frameworks can be implemented with OpenFlow 1.3 and later specifications.

 

 

 

  Meter Identifier   Meter Bands    Counters 

 

 

Figure 1.7.7. Meter table entry. 

 

The support for multiple controllers is extended. With OpenFlow 1.2, only fault management is targeted 

by a master/slave scheme. With OpenFlow 1.3, arbitrary auxiliary connections can be used to 

supplement the connection with the master controller and the switch. Thereby, better load balancing in 

the control plane may be achieved. Moreover, per-connection event filtering is introduced. This allows 

controllers to subscribe only to message types they are interested in. For example, a controller 

responsible for collecting statistics about the network can be attached as the auxiliary controller and 

subscribes only to statistics events generated by the switches. 
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OpenFlow 1.3 supports IPv6 extension headers. This includes, e.g., matching on the encrypted security 

payload (ESP) IPv6 header, IPv6 authentication header, or hop-by-hop IPv6 header. Furthermore, 

support for Provider Backbone Bridge (PBB) is added, as well as other minor protocol enhancements. 

 

OpenFlow 1.4 

OpenFlow 1.4 [88] was released in October 2013. The ONF improved the support for the OpenFlow 

Extensible Match (OXM). TLV structures for ports, tables, and queues are added to the protocol, and 

hard-coded parts from earlier specifications are now replaced by the new TLV structures. The 

configuration of optical ports is now possible. In addition, controllers can send control messages in a 

single message bundle to switches. Minor improvements of group tables, flow eviction on full tables 

and monitoring features are also included. 

 

Summary of OpenFlow Specifications and Controllers 

 

Table 2 provides the supported protocols and available match fields of the discussed OpenFlow versions. 

Table 3 compiles the types of statistics collected by a switch, which can be queried by a controller. 

 

 

Table 2. OpenFlow (OF) match fields. 

 

 

 OF 1.0 OF 1.1 OF 1.2 OF 1.3 & OF 1.4 

     

Ingress Port X X X X 

Metadata  X X X 

Ethernet: src, dst, type X X X X 

IPv4: src, dst, proto, ToS X X X X 

TCP/UDP: src port, dst port X X X X 

MPLS: label, traffic class  X X X 

OpenFlow Extensible Match 

(OXM)   X X 

IPv6: src, dst, flow label, 

ICMPv6   X X 

IPv6 Extension Headers    X 

     

 

A list of open source controllers is given in Table 4. The NOX controller [29] was initially developed at 

Stanford University and can be downloaded from [30]. It is written in C++ and licensed under the GNU 

General Public License (GPL). The NOX controller was used in many research papers. The POX [90] 

controller is a rewrite of the NOX controller in Python and can be used on various platforms. Initially, 

POX was also published under the GPL, but has been available under the Apache Public License (APL) 

since November, 2013. The Beacon [91] controller was also developed at Stanford University but is 

written in Java. The controller is available under a BSD license. The Floodlight controller [92] is a fork 

of the Beacon controller and is sponsored by Big Switch Networks. It is licensed under the APL.The 

Maestro controller [93] was developed at Rice University and written in Java. The authors emphasize 

the use of multi-threading to improve the performance of the controller in larger networks. It is licensed 

under the GNU Lesser General Public License (LGPL). The NodeFLow [114] controller is written in 

Java and is based on the Node.JS library. It is available under the MIT license. The Trema [115] 
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controller is written in C and Ruby. It is possible to write plugins in C and in Ruby for that controller. It 

is licensed under the GPL and developed by NEC. Finally, the OpenDaylight controller [116] is written 

in Java and hosted by the Linux Foundation. The OpenDaylight controller has no restriction on the 

operating system and is not bound to Linux. The controller is published under the Eclipse Public License 

(EPL). 

 

Table 3. Statistics are measured for different parts of the OpenFlow switch. 
 

 

 OF 1.0 OF 1.1 OF 1.2 OF 1.3 & OF 1.4 

     

Per table statistics X X X X 

Per flow statistics X X X X 

Per port statistics X X X X 

Per queue statistics X X X X 

Group statistics  X X X 

Action bucket statistics  X X X 

Per-flow meter    X 

Per-flow meter band    X 

     

 

Table 4. List of available open source OpenFlow controllers. LGPL, Lesser General Public License; 

EPL, Eclipse Public License. 

 
Name Programming language License Comment 

    

NOX[29] C++ GPL Initially developed at Stanford University. NOX can be 

   downloaded from [30]. 

    

POX[30] Python Apache Forked from the NOX controller.  POX is written in 

   Python and runs under various platforms. 

    

Beacon [31] Java BSD Initially developed at Stanford. 

    

Floodlight [32] Java Apache Forked from the Beacon controller and sponsored by 

   Big Switch Networks. 

    

Maestro [33] Java LGPL Multi-threaded OpenFlow controller developed at Rice 

   University. 

    

NodeFLow [34] JavaScript MIT JavaScript OpenFlow controller based on Node.JS. 

    

Trema [35] C and Ruby GPL Plugins can be written in C and in Ruby.  Trema is 

   developed by NEC. 

    

OpenDaylight [36] Java EPL OpenDaylight is hosted by the Linux Foundation, but 

   has no restrictions on the operating system. 
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OF-CONFIG 

The OF-CONFIG protocol adds configuration and management support to OpenFlow switches. It is also 

standardized by the ONF. OF-CONFIG provides the configuration of various switch parameters that are 

not handled by the OpenFlow protocol. This includes features like setting the administrative controllers, 

the configuration of queues and ports, etc. The mentioned configuration possibilities are part of OF-

CONFIG 1.0 [67], which was released in December, 2011. The initial specification requires OpenFlow 

1.2 and later. As of this writing, the current specification is OF-CONFIG 1.1.1 and supports the 

configuration of OpenFlow 1.3 switches (68). 

 

 

CONCLUSION 

 

SDN can be expanded beyond the actual match lactation paradigm. For example, it could integrate 

middleboxes or programmable custom packet processors. 

This integration could offer new services like on-the-fly encryption, transcoding, or traffic classification. 

This requires coordination, consensus, and vendor support.  

In the control plane, the composing and complying of heterogeneous components are still difficult. For 

example, compose applications using Beacon, POX, or floodlight simultaneously. 

Finally, remark the SDN is a tool. They create new innovative services and applications. 
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