

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.27-48, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

27

@ECRTD-UK- https://www.eajournals.org/

Application of Software-Defined Networking

Sunday, Uzoma I. & Akhibi, Samuel D.

Paul löbe Straße 25, Ilmenau, Germany

ABSTRACT: Software-Defined Networking (SDN) is an architecture purporting to be dynamic,

manageable cost-effective, and adaptable, seeking to be suitable for the high bandwidth, dynamic nature

of today’s applications. SDN architectures decouple network control and forwarding functions enabling

the network control to become directly programmable and the underlying infrastructure to be abstract

from application and network services. In this paper, the advantages and challenges of Software-

Defined Networking (SDN) are discussed.However, the Software Defined Networking application (SDN

App) and the application of SDN are also discussed in detail.

KEYWORDS: networking, scalability, software, controller, packet

INTRODUCTION

A wise variety of applications with diverse requirements on the network services has been enabled by

rapid advancement in networking and computing technologies [1]The highly diverse and dynamic

network services demanded by current and emerging applications bring in new challenges to service

provisioning in future networks. Software-defined networking (SDN) and network functions

virtualization (NFV) are two significant recent innovations that are expected to address these challenges

[1].

Software-defined networking (SDN) has gained a lot of attention in recent years, because it addresses

the lack of programmability in existing networking architectures and enables easier and faster network

innovation. SDN clearly separates the data plane from the control plane and facilitates software

implementations of complex networking applications on top [2].

SDN separates network control and data forwarding functionalities to enable centralized and

programmable network control [1]. Key components of the SDN architecture include a data plane

consisting of network resources for data forwarding, a control plane comprising SDN controller(s)

providing centralized control of network resources, and control/management applications that program

network operations through a controller. The control-resource interface between the control and data

planes is called the southbound interface, while the control-application interface is called the northbound

inter-face. Advantages promised by SDN include simplified and enhanced network control, flexible and

efficient network management, and improved network service performance.

Network virtualization introduces an abstraction of the underlying infrastructure upon which virtual

networks with alternative architecture may be constructed to meet diverse service requirements [3].

More recently, the European Tele-Communications Standards Institute (ETSI) developed NFV.The

Software-Defined Networking is a new networking paradigm that tries to improve flexibility, and

programmability and reduces management complexity by separating the control plane from the data

plane [4], [5]. By having a centralized control plane, it is possible to have a global view of the network

providing the opportunity for simplified control applications. However, as with any centralized

architecture, scalability can become a major performance degrading factor as the network grows in size.

Therefore, understanding the scalability issues is extremely important in the design of carrier-grade

SDNs and their widespread adoption. Towards this end, some studies, predominantly experimental in

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.27-48, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

28

@ECRTD-UK- https://www.eajournals.org/

nature, have been carried out. Yeganeh et al. [3] points out several scalability concerns and argue that

they are not specific to SDNs. In [4], the authors evaluated the first SDN controller, NOX, and reported

that it can only serve 30,000 flow initiation requests while maintaining the flow setup time of less than

10 msec. The scalability of different control plane architectures (centralized, de-centralized and

hierarchical) is compared using simple queuing models in [5]. Solutions ranging from a distributed

controller architecture [6] to moving some control functions back to the switches [7] are proposed to

alleviate the scalability issues.

In the context of SDNs, scalability has always been evaluated based on the number of flow initiation

requests that can be supported while guaranteeing a Quality of Service (QoS) factor such as the flow

setup time1. While the above metric for scalability is important, it is more appropriate for static networks

and does not capture issues that surface when the network topology changes frequently.

Characterizing the throughput loss due to topology changes is hard without detailed information about

the topology. However, we can use, as a first approximation, the level of inconsistency between the

controller’s view of the topology and the actual network as a proxy for the throughput degradation [10].

Note that having a link in the actual network, but not in the controller’s view of the topology, is not an

issue because the flow table will not have that additional link [11]. However, the inconsistency caused

by a link failure could lead to throughput degradation if that link is present in the path of an already

established flow. It is straight-forward to compute the expected flow setup time when the size of a

network in terms of the number of switches and links is known. In this paper, we define scalability as

the number of switches that can be controlled while maintaining the inconsistency below a certain

number of links and maintaining the expected flow setup time below a certain threshold when the links

are characterized by the distributions of their lifetimes and down-times [10].

REVIEW OF RELEVANT LITERATURE

The past few years have witnessed exciting progress in SDN technologies and their applications in

various networking scenarios [12], including wireless networks [14]. On the other hand, researchers

have noticed some issues of the current SDN approach that may limit its ability to fully support future

network services [15, 16]. To meet the evolving diverse service requirements, SDN data plane devices

need to fully perform general flow matching and packet forwarding, which may significantly increase

complexity and cost of SDN switches. On the control plane, current SDN architecture lacks sufficient

support of interoperability among heterogeneous SDN controllers, and thus limits its ability to provision

flexible end-to-end services across autonomous domains.

A root reason for the limitation of current SDN design to achieve its full potential for service

provisioning is the tight coupling between network architecture and infrastructure on both data and

control planes. Separation between data and control planes alone in the current SDN architecture is not

sufficient to overcome this obstacle. Another dimension of abstraction to decouple service functions and

network infra-structures is needed in order to unlock SDN’s full potential. Therefore, applying the

insights of NFV in SDN may further enhance the latter’s capability of flexible service provisioning.

On the other hand, many technical challenges must be addressed for realizing the NFV paradigm.

Management and orchestration have been identified as key components in the ETSI NFV architecture.

Much more sophisticated control and management mechanisms for both virtual and physical resources

are required by the highly dynamic networking environment enabled by NFV, in which programmatic

network control is indispensable. Employing the SDN principle — decoupling control intelligence from

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.27-48, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

29

@ECRTD-UK- https://www.eajournals.org/

the controlled resources to enable a logically centralized programmable control/management plane —

in the NFV architecture may greatly facilitate realization of NFV [17].

Recent research efforts toward combining SDN and NFV to enhance network service provisioning have

been made from various aspects. Hypervisor and container-based virtualization mechanisms have been

applied to support multi-tenant virtual SDN networks. For example, the network hypervisor Flow-Visor

[18] allows multiple controllers to share an Open Flow platform and slice data plane infrastructure.

FlowN [18] offers container-based virtualization solution in which each tenant may run its own control

application on a shared SDN controller. Some network system designs have explored utilizing

capabilities of both SDN and NFV. For example, Woods et al. [19] presented NetVM, a high-

performance virtual server platform for supporting NFV, and discussed design guidelines for combining

SDN controllers with NetVM to provide coordinated network management. Ding et al. [10] designed an

open platform for service chain as a service by using capabilities of SDN together with NFV. The

progressive evolution from SDN-agnostic NFV initiative to SDN-enabled NFV solution was discussed

in [11]. Relevant standardization organizations are also actively conducting the related study. The Open

Network Foundation (ONF) recently released a report on the relationship of SDN and NFV [20], and

ETSI NFV ISG is currently

Figure 1.2 A two-dimensional model of layer-plane abstraction in future networking.

Recent research efforts toward combining SDN and NFV to enhance network service provisioning have

been made from various aspects. Hypervisor and container-based virtualization mechanisms have been

applied to support multi-tenant virtual SDN networks. For example, the network hypervisor Flow-Visor

[17] allows multiple controllers to share an OpenFlow platform and slice data plane infrastructure.

FlowN [18] offers a container-based virtualization solution in which each tenant may run its own control

application on a shared SDN controller. Some network system designs have explored utilizing

capabilities of both SDN and NFV. For example, Woods et al. [19] presented NetVM, a high-

performance virtual server platform for supporting NFV, and discussed design guidelines for combining

SDN controllers with NetVM to provide coordinated network management. Ding et al. [20] designed an

open platform for service chain as a service by using capabilities of SDN together with NFV. The

progressive evolution from SDN-agnostic NFV initiative to SDN-enabled NFV solution was discussed

in [21]. Relevant standardization organizations are also actively conducting the related study. The Open

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.27-48, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

30

@ECRTD-UK- https://www.eajournals.org/

Network Foundation (ONF) recently released a report on the relationship of SDN and NFV [12], and

ETSI NFV ISG is currently working on a draft report regarding SDN usage in the NFV architecture [23].

Although encouraging progress has been made toward combining SDN and NFV, research in this area

is still in its infant stage. Current works address the problem from various aspects, including hypervisors

for virtual SDN networks, usage of SDN controllers in NFV architecture, and SDN/NFV hybrid

solutions for service provisioning. It is desirable to have a high-level framework that provides a holistic

vision of how SDN and NFV principles may naturally fit into unified network architecture, which may

greatly facilitate the research and technical development in this area. This motivates the work presented

in the rest of this article.

A Two-Dimensional Abstraction Model for SDN and NFV Integration In this section, we present a two-

dimensional abstraction model to show how SDN and NFV principles are related to each other and how

they may fit in unified network architecture.

As shown in Fig. 1.2, this abstraction model has layers as well as planes with clear distinction between

these two concepts. Both layers and planes offer abstraction in network architecture but in different

dimensions. Abstraction provided by layers is in the vertical dimension in the model, starting with

underlying hardware and then adding a sequence of layers, each providing a higher (more abstract) level

of service. A key property of layering is that the functions of a higher layer rely on the services provided

by the lower layers, therefore forming a stack of layers for offering services to applications on the top.

On the other hand, plane abstraction is in the horizontal dimension in that functions performed on a

plane do not necessarily rely on functions of another plane; therefore, there is no higher or lower plane.

Instead, each plane focuses on a particular aspect of the entire network system, such as data transport,

network control, and system management. Each plane may comprise multiple layers from physical

hardware to application software and collaborates with other planes for network service provisioning.

Traditional circuit-switching-based telecommunication systems embraced plane-dimension abstraction

(separating data, control, and management planes) without clear abstraction on the layer dimension. For

example, Signal System No. 7 was logically separated from voice channels, and the intelligent network

(IN) had service control points (SCPs) decoupled from the data transportation platform [24].

PROTOCOL OPTIONS FOR THE SOUTHBOUND INTERFACE

The most common southbound interface is Open Flow, which is standardized by the Open Networking

Foundation (ONF). Open Flow is a protocol that describes the interaction of one or more control servers

with Open Flow-compliant switches. An Open Flow controller installs flow table entries in switches, so

that these switches can forward traffic according to these entries. Thus, Open Flow switches depend on

configuration by controllers. A flow is classified by match fields that are similar to access control lists

(ACLs) and may contain wildcards. In Section 3, we provide a detailed description of Open Flow and

describe the features offered by different versions of the protocol.

Another option for the southbound interface is the Forwarding and Control Element Separation

(ForCES) [5,6] which is discussed and has been standardized by the Internet Engineering Task Force

(IETF) since 2004. ForCES is also a framework, not only a protocol; the ForCES framework also

separates the control plane and data plane, but is considered more flexible and more powerful than

OpenFlow [7,8]. Forwarding devices are modeled using logical function blocks (LFB) that can be

composed in a modular way to form complex forwarding mechanisms. Each LFB provides a given

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.27-48, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

31

@ECRTD-UK- https://www.eajournals.org/

functionality, such as IP routing. The LFBs model a forwarding device and cooperate to form even more

complex network devices. Control elements use the ForCES protocol to configure the interconnected

LFBs to modify the behavior of the forwarding elements.

The Soft Router architecture [9] also defines separate control and data plane functionality. It allows

dynamic bindings between control elements and data plane elements, which allows a dynamic

assignment of control and data plane elements. In [9], the authors present the SoftRouter architecture

and highlight its advantages on the Border Gateway Protocol (BGP) with regard to reliability.

ForCES and Soft Router have similarities with OpenFlow and can fulfill the role of the southbound

interface. Other networking technologies are also discussed, as well as possible southbound interfaces

in the IETF. For instance, the Path Computation Element (PCE) [10] and the Locator/ID Separation

Protocol (LISP) [11] are candidates for southbound interfaces.

NORTHBOUND APIS FOR NETWORK APPLICATIONS

As we will highlight in Section 3, the OpenFlow protocol provides an interface that allows a control

software to program switches in the network. Basically, the controller can change the forwarding

behavior of a switch by altering the forwarding table. Controllers often provide a similar interface to

applications, which is called the northbound interface, to expose the programmability of the network.

The northbound interface is not standardized and often allows fine-grained control of the switches.

Applications should not have to deal with the details of the southbound interface, e.g., the application

does not need to know all details about the network topology, etc. For instance, a traffic engineering

network applications should tell the controller the path layout of the flows, but the controller should

create appropriate commands to modify the forwarding tables of the switches. Thus, network

programming languages are needed to ease and automate the configuration and management of the

network.

The requirements of a language for SDN are discussed in [12]. The authors focus on three important

aspects. (1) The network programming language has to provide the means for querying the network

state. The language runtime environment gathers the network state and statistics, which is then provided

to the application; (2) The language must be able to express network policies that define the packet

forwarding behavior. It should be possible to combine policies of different network applications.

Network applications possibly construct conflicting network policies, and the network language should

be powerful enough to express and to resolve such conflicts; (3) The reconfiguration of the network is a

difficult task, especially with various network policies. The runtime environment has to trigger the

update process of the devices to guarantee that access control is preserved, forwarding loops are avoided

or other invariants are met.

Popular SDN programming languages that fulfill the presented requirements are Frenetic [13], its

successor, Pyretic [14], and Procera [15]. These languages provide a declarative syntax and are based

on functional reactive programming. Due to the nature of functional reactive programming, these

languages provide a composable interface for network policies. Various other proposals exist, as well.

The European FP7 research project, NetIDE, addresses the northbound interfaces of SDN networks[16].

SDN, ACTIVE AND PROGRAMMABLE NETWORKS

In the past, various technologies were developed to enable programmability in communication networks.

Active networks (AN) [17] were developed in the 1990s. The basic idea of active networks is to inject

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.27-48, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

32

@ECRTD-UK- https://www.eajournals.org/

programs into data packets. Switches extract and execute programs from data packets. With this method,

new routing mechanisms and network services can be implemented without the modification of the

forwarding hardware. However, this approach has not prevailed, due to security concerns and

performance issues that can occur on executing programs in the forwarding devices. For example, an

attacker can inject malicious programs into network packets and forward them into the network.

Programmable networks (PN) [18,19] also provide a means for programmability in the network by

executing programs on packets similar to AN. However, programs are not included in the data packets

as with AN. The programs are installed inside the network nodes, which execute the programs on the

packets. This clearly reduced security concerns that occur with AN, because a network node only accepts

programs after a prior signaling and node setup. Various proposals for PN were made in the past. For

example, xbind [20] was proposed for asynchronous transfer mode (ATM) networks that are tailored

towards quality of service (QoS) and multimedia applications. The aim of xbind was to overcome the

complexity associated with ATM and to allow easier service creation by separating the control

algorithms from the ATM protocol, which was enabled by the programmability of the forwarding

devices through programming languages.

Both approaches, AN and PN, introduce new flexibility by allowing programs to be executed within the

network. They are more flexible than an OpenFlow-based SDN approach, because they allow one to

program the data plane in an extensible way. New data plane functionality can be implemented through

programs that are either part of data packets with AN or installed inside network nodes with PN. An

OpenFlow-based SDN approach cannot extend the data plane functionality without an upgrade of the

switches, due to the fact that OpenFlow only provides a fixed set of network operations. The OpenFlow

controller is only able to program the switch with its supported set of operations.

SYSTEM DESCRIPTION

In traditional IP networks, the packet routers are in charge of determining the routing policies and other

control functions as well as forwarding the packets. That is, the control plane and data plane are tightly

coupled in traditional networking architectures. The key idea behind SDNs is to separate the control

plane, managed by a controller, from the data plane consisting of a set of forwarding elements or

switches. The basic SDN architecture that separates control plane from data plane is shown in Fig. 1.6.

In the figure, the services provided by the network operator, such as security, are termed as the

application, and they communicate with the SDN controller using interfaces called northbound APIs

[80] (for e.g., Procera and RESTFul [70]). The SDN controller controls and programs the switches to

perform different functionality using APIs that are termed as southbound APIs (the most common

interfaces are OpenFlow [9], ForCES, and NetConf [2]).

We start by describing the flow setup process in SDNs. A more detailed description can be found in

[10]. As a part of the start-up procedure, an SDN switch will communicate its IP address and all its

available switch ports to the controller. When a packet from a new flow arrives, the switch first checks

if there is an entry in its flow table corresponding to the packet it received. If there is no forwarding rule

available in the flow table for the received packet, then the packet is forwarded to the controller (for

example, in OpenFlow the packet is encapsulated in a Packet_In message). The controller, upon

receiving the message from the switch, computes or fetches the pre-computed forwarding rules and

installs them in all the concerned switches along the path of the flow. Once the forwarding rules are

installed in the switches, the switches can forward packets without any intervention from the controller.

The controller should have an up-to-date view of the network in order to compute and install appropriate

control functions in the switches. If the controller’s view of the network is not consistent with the actual

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.27-48, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

33

@ECRTD-UK- https://www.eajournals.org/

topology, the forwarding rules installed by the controller could be incorrect and could lead to packet

drops causing significant performance degradation. Therefore, the controller performs the topology

discovery process periodically to update its view of the network.

Fig. 1.6. Architecture of a software defined network.

THE OPENFLOW PROTOCOL

The OpenFlow protocol is the most commonly used protocol for the southbound interface of SDN, which

separates the data plane from the control plane. The white paper about OpenFlow [71] points out the

advantages of a flexibly configurable forwarding plane. OpenFlow was initially proposed by Stanford

University, and it is now standardized by the ONF [4]. In the following, we first give an overview of the

structure of OpenFlow and then describe the features supported by the different specifications.

Overview

The OpenFlow architecture consists of three basic concepts. (110) The network is built up by OpenFlow-

compliant switches that compose the data plane; (102) the control plane consists of one or more

OpenFlow controllers; (3) a secure control channel connects the switches with the control plane. In the

following, we discuss OpenFlow switches and controllers and the interactions among them.

An OpenFlow-compliant switch is a basic forwarding device that forwards packets according to its flow

table. This table holds a set of flow table entries, each of which consists of match fields, counters and

instructions, as illustrated in Figure 2. Flow table entries are also called flow rules or flow entries. The

“header fields” in a flow table entry describe to which packets this entry is applicable. They consist of a

wildcard-capable match over specified header fields of packets. To allow fast packet forwarding with

OpenFlow, the switch requires ternary content addressable memory (TCAM) that allows the fast lookup

of wildcard matches. The header fields can match different protocols depending on the OpenFlow.

specification, e.g., Ethernet, IPv4, IPv6 or MPLS. The “counters” are reserved for collecting statistics

about flows. They store the number of received packets and bytes, as well as the duration of the flow.

The “actions” specify how packets of that flow are handled. Common actions are “forward”, “drop”,

“modify field”, etc.

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.27-48, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

34

@ECRTD-UK- https://www.eajournals.org/

Header Fields Counters Action

Figure 1.7.1. Flow table entry for OpenFlow 1.0.

A software program, called the controller, is responsible for populating and manipulating the flow tables

of the switches. By insertion, modification and removal of flow entries, the controller can modify the

behavior of the switches with regard to forwarding. The OpenFlow specification defines the protocol

that enables the controller to instruct the switches. To that end, the controller uses a secure control

channel.

Three classes of communication exist in the OpenFlow protocol: controller-to-switch, asynchronous and

symmetric communication (90). The controller-to-switch communication is responsible for feature

detection, configuration, programming the switch and information retrieval. Asynchronous

communication is initiated by the OpenFlow-compliant switch without any solicitation from the

controller. It is used to inform the controller about packet arrivals, state changes at the switch and errors.

Finally, symmetric messages are sent without solicitation from either side, i.e., the switch or the

controllers are free to initiate the communication without solicitation from the other side. Examples for

symmetric communication are hello or echo messages that can be used to identify whether the control

channel is still live and available (115).

 Figure 1.7.2. Basic packet forwarding with OpenFlow in a switch.

The basic packet forwarding mechanism with OpenFlow is illustrated in Figure 1.7.2. When a switch

receives a packet, it parses the packet header, which is matched against the flow table. If a flow table

entry is found where the header field wildcard matches the header, the entry is considered. If several

such entries are found, packets are matched based on prioritization, i.e., the most specific entry or the

wildcard with the highest priority is selected. Then, the switch updates the counters of that flow table

entry. Finally, the switch performs the actions specified by the flow table entry on the packet, e.g., the

switch forwards the packet to a port. Otherwise, if no flow table entry matches the packet header, the

switch generally notifies its controller about the packet, which is buffered when the switch is capable of

buffering. To that end, it encapsulates either the unbuffered packet or the first bytes of the buffered

packet using a PACKET-IN message and sends it to the controller; it is common to encapsulate the

packet header and the number of bytes defaults to 128. The controller that receives the PACKET-IN

notification identifies the correct action for the packet and installs one or more appropriate entries in the

requesting switch. Buffered packets are then forwarded according to the rules; this is triggered by setting

the buffer ID in the flow insertion message or in explicit PACKET-OUT messages. Most commonly,

the controller sets up the whole path for the packet in the network by modifying the flow tables of all

switches on the path (96).

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.27-48, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

35

@ECRTD-UK- https://www.eajournals.org/

OpenFlow Specifications

We now review the different OpenFlow specifications by highlighting the supported operations and the

changes compared to their previous major version and summarize the features of the different versions.

Finally, we briefly describe the OpenFlow Configuration and Management Protocol OF-CONFIG

protocol, which adds configuration and management support to OpenFlow switches (84).

OpenFlow 1.0

The OpenFlow 1.0 specification [22] was released in December, 2009. As of this writing, it is the most

commonly deployed version of OpenFlow. Ethernet and IP packets can be matched based on the source

and destination address. In addition, Ethernet-type and VLAN fields can be matched for Ethernet, the

differentiated services (DS) and Explicit Congestion Notification (ECN) fields, and the protocol field

can be matched for IP. Moreover, matching on TCP or UDP source and destination port numbers is

possible.

Figure 1.7.2 illustrates the packet handling mechanism of OpenFlow 1.0. The OpenFlow standard

exactly specifies the packet parsing and matching algorithm. The packet matching algorithm starts with

a comparison of the Ethernet and VLAN fields and continues if necessary with IP header fields. If the

IP type signals TCP or UDP, the corresponding transport layer header fields are considered.

Several actions can be set per flow. The most important action is the forwarding action. This action

forwards the packet to a specific port or floods it to all ports. In addition, the controller can instruct the

switch to encapsulate all packets of a flow and send them to the controller. An action to drop packets is

also available. This action enables the implementation of network access control with OpenFlow.

Another action allows modifying the header fields of the packet, e.g., modification of the VLAN tag, IP

source, destination addresses, etc.

Statistics can be gathered using various counters in the switch. They may be queried by the controller.

It can query table statistics that contain the number of active entries and processed packets. Statistics

about flows are stored per flow inside the flow table entries. In addition, statistics per port and per queue

are also available (73).

OpenFlow 1.0 provides basic quality of service (QoS) support using queues, and OpenFlow 1.0 only

supports minimum rate queues. An OpenFlow-compliant switch can contain one ore more queues, and

each queue is attached to a port. An OpenFlow controller can query the information about queues of a

switch. The “Enqueue” action enables forwarding to queues. Packets are treated according to the queue

properties. Note that OpenFlow controllers are only able to query, but not to set, queue properties. The

OF-CONFIG protocol allows one to modify the queue properties, but requires OpenFlow 1.2 and later.

We present OF-CONFIG in Section 3.2.7.

OpenFlow 1.1

OpenFlow 1.1 [23] was released in February, 2011. It contains significant changes compared to

OpenFlow 1.0. Packet processing works differently now. Packets are processed by a pipeline of multiple

flow tables. Two major changes are introduced: a pipeline of multiple flow tables and a group table.

We first explain the pipeline. With OpenFlow 1.0, the result of the packet matching is a list of actions

that are applied to the packets of a flow. These actions are directly specified by flow table entries, as

shown in Figures 1.7.5 and 1.7.6. With OpenFlow 1.1, the result of the pipeline is a set of actions that

are accumulated during pipeline execution and are applied to the packet at the end of the pipeline. The

OpenFlow table pipeline requires a new metadata field, instructions and action sets. The metadata field

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.27-48, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

36

@ECRTD-UK- https://www.eajournals.org/

may collect metadata for a packet during the matching process and carry them from one pipeline step to

the next. Flow table entries contain instructions instead of actions, as shown in Figure 1.7.4. The list of

possible instructions for OpenFlow 1.1 are given in Table 1. The “Apply-Actions” instruction directly

applies actions to the packet. The specified actions are not added to the action set. The “Write-Actions”

instruction adds the specified actions to the action set and allows for incremental construction of the

action set during pipeline execution. The “Clear-Actions” instruction empties the action set (77). The

“Write-Metadata” instruction updates the metadata field by applying the specified mask to the current

metadata field. Finally, the “Goto” instruction refers to a flow table, and the matching process continues

with this table. To avoid loops in the pipeline, only tables with a higher ID than the current table are

allowed to be referenced. Thus, the matching algorithm will deterministically terminate. If no “Goto”

instruction is specified, the pipeline processing stops, and the accumulated action set is executed on the

packet (105).

Header Fields Counters Instructions

Figure 1.7.4. Flow table entry for OpenFlow 1.1 and later.

Table 1. List of instructions for OpenFlow 1.1.

Instruction Argument Semantic

Apply-Actions Action(s)

Applies actions immediately without adding them to the action

set

Write-Actions Action(s) Merge the specified action(s) into the action set

Clear-Actions - Clear the action set

Write-Metadata Metadata mask Updates the metadata field

Goto-Table Table ID Perform matching on the next table

Figure 1.7.5 illustrates the packet processing of the pipeline. Before the pipeline begins, the metadata

field and the action set for a packet are initialized as empty. The matching process starts on the first flow

table. The packet is matched against the consecutive flow tables from each of which the highest-priority

matching flow table entry is selected. The pipeline ends when no matching flow table entry is found or

no “Goto” instruction is set in the matching flow table entry. The pipeline supports the definition of

complex forwarding mechanisms and provides more flexibility compared to the switch architecture of

OpenFlow 1.0.

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.27-48, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

37

@ECRTD-UK- https://www.eajournals.org/

Figure 1.7.5. OpenFlow pipeline.

The second major change is the addition of a group table. The group table supports more complex

forwarding behaviors, which are possibly applied to a set of flows. It consists of group table entries, as

shown in Figure 1.7.6. A group table entry may be performed if a flow table entry uses an appropriate

instruction that refers to its group identifier. In particular, multiple flow table entries can point to the

same group identifier, so that the group table entry is performed for multiple flows.

Group Identifier Group Type Counters Action Buckets

Figure 1.7.6. Group table entries for OpenFlow 1.1 and later.

The group table entry contains a group type, a counters field and a field for action buckets. The counters

are used for collecting statistics about packets that are processed by this group. A single action bucket

contains a set of actions that may be executed, depending on the group type. There are possibly multiple

action buckets for a group table entry. The group types define which of them are applied. Four group

types exist, and we illustrate the use of two of them.

The group type “all” is used to implement broadcast and multicast. Packets of this group will be

processed by all action buckets. The actions of each bucket are applied to the packet consecutively. For

example, a group table entry with the type “all” contains two action buckets. The first bucket consists of

the action “forward to Port 1”. The second bucket consists of the action “forward to Port 2”. Then, the

switch sends the packet both to Port 1 and Port 2.

The group type “fast failover” is used to implement backup paths. We first explain the concept of

liveness for illustration purposes. An action bucket is considered live if all actions of the bucket are

considered live. The liveness of an action depends on the liveness of its associated port. However, the

liveness property of a port is managed outside of the OpenFlow protocol. The OpenFlow standard only

specifies the minimum requirement that a port should not be considered live if the port or the link is

down. A group with the type “fast failover” executes the first live action bucket, and we explain this by

the following example. The primary path to a flow’s destination follows Port 3, while its backup path

follows Port 4. This may be configured by a group table with the first action bucket containing the

forwarding action towards Port 3 and a second action bucket containing the forwarding action towards

Port 4. If Port 3 is up, packets belonging to this group are forwarded using Port 3; otherwise, they are

forwarded using Port 4. Thus, the “fast failover” group type supports reroute decisions that do not require

immediate controller interaction. Thus, a fast reroute mechanisms can be implemented that ensures

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.27-48, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

38

@ECRTD-UK- https://www.eajournals.org/

minimum packet loss in failure cases. Fast reroute mechanisms, such as the MPLS fast reroute [69] or

the IP fast reroute [70] can be implemented with OpenFlow group tables.

As an optional feature, OpenFlow 1.1 performs matching of MPLS labels and traffic classes.

Furthermore, MPLS-specific actions, like pushing and popping MPLS labels, are supported. In general,

the number of supported actions for OpenFlow 1.1 is larger than for OpenFlow 1.0. For example, the

Time-To-Live (TTL) field in the IP header can be decremented, which is unsupported in OpenFlow 1.0.

OpenFlow 1.1 provides additional statistics fields due to the changed switch architecture. Controllers

can query statistics for the group table and group entries, as well as for action buckets (99).

OpenFlow 1.2

OpenFlow 1.2 [26] was released in December, 2011. It comes with extended protocol support, in

particular for IPv6. OpenFlow 1.2 can match IPv6 source and destination addresses, protocol number,

flow label, traffic class and various ICMPv6 fields. Vendors have new possibilities to extend OpenFlow

by themselves to support additional matching capabilities. A type-length-value (TLV) structure, which

is called OpenFlow Extensible Match (OXM), allows one to define new match entries in an extensible

way (59).

With OpenFlow 1.2, a switch may simultaneously be connected to more than a single controller, i.e., it

can be configured to be administrated by a set of controllers. The switch initiates the connection, and

the controllers accept the connection attempts. One controller is defined master and programs the switch.

The other controllers are slaves. A slave controller can be promoted to the master role, while the master

is demoted to the slave role. This allows for controller failover implementations (109).

OpenFlow 1.3

OpenFlow 1.3 [27] introduces new features for monitoring and operations and management (OAM). To

that end, the meter table is added to the switch architecture. Figure 7 shows the structure of meter table

entries. A meter is directly attached to a flow table entry by its meter identifier and measures the rate of

packets assigned to it. A meter band may be used to rate-limit the associated packet or data rate by

dropping packets when a specified rate is exceeded. Instead of dropping packets, a meter band may

optionally recolor such packets by modifying their differentiated services (DS) field. Thus, simple or

complex QoS frameworks can be implemented with OpenFlow 1.3 and later specifications.

 Meter Identifier Meter Bands Counters

Figure 1.7.7. Meter table entry.

The support for multiple controllers is extended. With OpenFlow 1.2, only fault management is targeted

by a master/slave scheme. With OpenFlow 1.3, arbitrary auxiliary connections can be used to

supplement the connection with the master controller and the switch. Thereby, better load balancing in

the control plane may be achieved. Moreover, per-connection event filtering is introduced. This allows

controllers to subscribe only to message types they are interested in. For example, a controller

responsible for collecting statistics about the network can be attached as the auxiliary controller and

subscribes only to statistics events generated by the switches.

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.27-48, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

39

@ECRTD-UK- https://www.eajournals.org/

OpenFlow 1.3 supports IPv6 extension headers. This includes, e.g., matching on the encrypted security

payload (ESP) IPv6 header, IPv6 authentication header, or hop-by-hop IPv6 header. Furthermore,

support for Provider Backbone Bridge (PBB) is added, as well as other minor protocol enhancements.

OpenFlow 1.4

OpenFlow 1.4 [88] was released in October 2013. The ONF improved the support for the OpenFlow

Extensible Match (OXM). TLV structures for ports, tables, and queues are added to the protocol, and

hard-coded parts from earlier specifications are now replaced by the new TLV structures. The

configuration of optical ports is now possible. In addition, controllers can send control messages in a

single message bundle to switches. Minor improvements of group tables, flow eviction on full tables

and monitoring features are also included.

Summary of OpenFlow Specifications and Controllers

Table 2 provides the supported protocols and available match fields of the discussed OpenFlow versions.

Table 3 compiles the types of statistics collected by a switch, which can be queried by a controller.

Table 2. OpenFlow (OF) match fields.

 OF 1.0 OF 1.1 OF 1.2 OF 1.3 & OF 1.4

Ingress Port X X X X

Metadata X X X

Ethernet: src, dst, type X X X X

IPv4: src, dst, proto, ToS X X X X

TCP/UDP: src port, dst port X X X X

MPLS: label, traffic class X X X

OpenFlow Extensible Match

(OXM) X X

IPv6: src, dst, flow label,

ICMPv6 X X

IPv6 Extension Headers X

A list of open source controllers is given in Table 4. The NOX controller [29] was initially developed at

Stanford University and can be downloaded from [30]. It is written in C++ and licensed under the GNU

General Public License (GPL). The NOX controller was used in many research papers. The POX [90]

controller is a rewrite of the NOX controller in Python and can be used on various platforms. Initially,

POX was also published under the GPL, but has been available under the Apache Public License (APL)

since November, 2013. The Beacon [91] controller was also developed at Stanford University but is

written in Java. The controller is available under a BSD license. The Floodlight controller [92] is a fork

of the Beacon controller and is sponsored by Big Switch Networks. It is licensed under the APL.The

Maestro controller [93] was developed at Rice University and written in Java. The authors emphasize

the use of multi-threading to improve the performance of the controller in larger networks. It is licensed

under the GNU Lesser General Public License (LGPL). The NodeFLow [114] controller is written in

Java and is based on the Node.JS library. It is available under the MIT license. The Trema [115]

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.27-48, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

40

@ECRTD-UK- https://www.eajournals.org/

controller is written in C and Ruby. It is possible to write plugins in C and in Ruby for that controller. It

is licensed under the GPL and developed by NEC. Finally, the OpenDaylight controller [116] is written

in Java and hosted by the Linux Foundation. The OpenDaylight controller has no restriction on the

operating system and is not bound to Linux. The controller is published under the Eclipse Public License

(EPL).

Table 3. Statistics are measured for different parts of the OpenFlow switch.

 OF 1.0 OF 1.1 OF 1.2 OF 1.3 & OF 1.4

Per table statistics X X X X

Per flow statistics X X X X

Per port statistics X X X X

Per queue statistics X X X X

Group statistics X X X

Action bucket statistics X X X

Per-flow meter X

Per-flow meter band X

Table 4. List of available open source OpenFlow controllers. LGPL, Lesser General Public License;

EPL, Eclipse Public License.

Name Programming language License Comment

NOX[29] C++ GPL Initially developed at Stanford University. NOX can be

 downloaded from [30].

POX[30] Python Apache Forked from the NOX controller. POX is written in

 Python and runs under various platforms.

Beacon [31] Java BSD Initially developed at Stanford.

Floodlight [32] Java Apache Forked from the Beacon controller and sponsored by

 Big Switch Networks.

Maestro [33] Java LGPL Multi-threaded OpenFlow controller developed at Rice

 University.

NodeFLow [34] JavaScript MIT JavaScript OpenFlow controller based on Node.JS.

Trema [35] C and Ruby GPL Plugins can be written in C and in Ruby. Trema is

 developed by NEC.

OpenDaylight [36] Java EPL OpenDaylight is hosted by the Linux Foundation, but

 has no restrictions on the operating system.

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.27-48, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

41

@ECRTD-UK- https://www.eajournals.org/

OF-CONFIG

The OF-CONFIG protocol adds configuration and management support to OpenFlow switches. It is also

standardized by the ONF. OF-CONFIG provides the configuration of various switch parameters that are

not handled by the OpenFlow protocol. This includes features like setting the administrative controllers,

the configuration of queues and ports, etc. The mentioned configuration possibilities are part of OF-

CONFIG 1.0 [67], which was released in December, 2011. The initial specification requires OpenFlow

1.2 and later. As of this writing, the current specification is OF-CONFIG 1.1.1 and supports the

configuration of OpenFlow 1.3 switches (68).

CONCLUSION

SDN can be expanded beyond the actual match lactation paradigm. For example, it could integrate

middleboxes or programmable custom packet processors.

This integration could offer new services like on-the-fly encryption, transcoding, or traffic classification.

This requires coordination, consensus, and vendor support.

In the control plane, the composing and complying of heterogeneous components are still difficult. For

example, compose applications using Beacon, POX, or floodlight simultaneously.

Finally, remark the SDN is a tool. They create new innovative services and applications.

References

[1] Qiang duan, Nirwan Ansari, and Mehmet Toy; software defined Network Virtualization: An

Architectural. Framework for integrating SDN and NFV for service provisioning in Future networks

[2] Astuto, B.N.; Mendonça, M.; Nguyen, X.N.; Obraczka, K.; Turletti, T.A Survey of

Software-Defined Networking: Past, Present, and Future of Programmable Networks. IEEE Commun.

Surv. Tutor. 2014, doi:10.1109/SURV.2014.012214.00180.

[3] Jain, R.; Paul, S. Network Virtualization and Software Defined Networking for Cloud

Computing: A Survey. IEEE Commun. Mag. 2013, 51, 24–31. Open Networking Foundation. Available

online: https://www.opennetworking.org/ (accessed on 22 July 2013).

[4] Doria, A.; Salim, J.H.; Haas, R.; Khosravi, H.; Wang, W.; Dong, L.; Gopal, R.; Halpern, J.

Forwarding and Control Element Separation (ForCES) Protocol Specification. RFC 5810 (Proposed

Standard), 2010. Available online: https://datatracker.ietf.org/doc/rfc5810/ (accessed on 22 July 2013).

[5] Yang, L.; Dantu, R.; Anderson, T.; Gopal, R.Forwarding and Control Element Separation

(ForCES) Framework. RFC 3746 (Informational), 2004. Available online:

https://datatracker.ietf.org/doc/rfc3746/ (accessed on 22 July 2013).

[6] Hares, S. Analysis of Comparisons between OpenFlow and ForCES. Internet Draft

(Informational), 2012. Available online: https://datatracker.ietf.org/doc/draft-hares-forces-

vs-openflow/ (accessed on 17 February 2014).

[7] Haleplidis, E.; Denazis, S.; Koufopavlou, O.; Halpern, J.; Salim, J.H. Software-Defined

Networking: Experimenting with the Control to Forwarding Plane Interface. In Proceedings of the

European Workshop on Software Defined Networks (EWSDN), Darmstadt, Germany, 25–26 October

2012; pp. 91–96.

[8] Lakshman, T.V.; Nandagopal, T.; Ramjee, R.; Sabnani, K.; Woo, T. The SoftRouter

Architecture. In Proceedings of the ACM Workshop on Hot Topics in Networks (HotNets), San Diego,

CA, USA, 15–16 November 2004.

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.27-48, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

42

@ECRTD-UK- https://www.eajournals.org/

[9] Zheng, H.; Zhang, X. Path Computation Element to Support Software-Defined Transport

Networks Control Internet-Draft (Informational). 2014. Available online:

https://datatracker.ietf.org/doc/draft-zheng-pce-for-sdn-transport/ (accessed on 2 March 2014).

[10] Rodriguez-Natal, A.; Barkai, S.; Ermagan, V.; Lewis, D.; Maino, F.; Farinacci, D. Software

Defined Networking Extensions for the Locator/ID Separation Protocol. Internet Draft (Experimental),

2014. Available online: http://wiki.tools.ietf.org/id/ draft-rodrigueznatal-lisp-sdn-00.txt (accessed on 2

March 2014).

[11] Rexford, J.; Freedman, M.J.; Foster, N.; Harrison, R.; Monsanto, C.; Reitblatt, M.; Guha, A.;

Katta, N.P.; Reich, J.; Schlesinger, C. Languages for Software-Defined Networks. IEEE Commun. Mag.

2013, 51, 128–134.

[12] Foster, N.; Harrison, R.; Freedman, M.J.; Monsanto, C.; Rexford, J.; Story, A.; Walker, D.

Frenetic: A Network Programming Language. In Proceedings of the ACM SIGPLAN International

Conference on Functional Programming, Tokyo, Japan, 19–21 September 2011.

[13] Monsanto, C.; Reich, J.; Foster, N.; Rexford, J.; Walker, D. Composing Software-Defined

Networks. In Proceedings of the USENIX Syposium on Networked Systems Design & Implementation

(NSDI), Lombard, IL, USA, 2–5 April 2013; pp. 1–14.

[14] Voellmy, A.; Kim, H.; Feamster, N. Procera: A Language for High-Level Reactive Network

Control. In Proceedings of the ACM Workshop on Hot Topics in Software Defined Networks (HotSDN),

Helsinki, Finland, 13–17 August 2012; pp. 43–48.

[15] Facca, F.M.; Salvadori, E.; Karl, H.; Lopez, D.R.; Gutierrez, P.A.A.; Kostic, D.; Riggio, R.

NetIDE: First Steps towards an Integrated Development Environment for Portable Network Apps. In

Proceedings of the European Workshop on Software Defined Networks (EWSDN), Berlin, Germany,

10–11 October 2013; pp. 105–110.

[16] Tennenhouse, D.L.; Wetherall, D.J. Towards an Active Network Architecture. ACM SIGCOMM

Comput. Commun. Rev. 1996, 26, 5–18.

[17] Campbell, A.T.; De Meer, H.G.; Kounavis, M.E.; Miki, K.; Vicente, J.B.; Villela, D. A Survey

of Programmable Networks. ACM SIGCOMM Comput. Commun. Rev. 1999, 29, 7–23.

[18] Feamster, N.; Rexford, J.; Zegura, E. The Road to SDN: An Intellectual History of

Programmable Networks. ACM Queue 2013, 12, 20–40.

[19] Chan, M.C.; Huard, J.F.; Lazar, A.A.; Lim, K.S. On Realizing a Broadband Kernel for

Multimedia Networks. In Proceedings of the International COST 237 Workshop on Multimedia

Telecommunications and Applications, Barcelona, Spain, 25–27 November 1996; pp. 56–74.

[20] McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker,

S.; Turner, J. OpenFlow: Enabling Innovation in Campus Networks. ACM SIGCOMM Comput.

Commun. Rev. 2008, 38, 69–74.

[21] OpenFlow Switch Consortium and Others. OpenFlow Switch Specification Version 1.0.0. 2009.

Available online: https://www.opennetworking.org/images/stories/downloads/sdn-resources/ onf-

specifications/openflow/openflow-spec-v1.3.0.pdf (accessed on 25 November 2013).

[22] OpenFlow Switch Consortium and Others. OpenFlow Switch Specification Version 1.1.0. 2011.

Available online: http://archive.openflow.org/documents/openflow-spec-v1.1.0.pdf (accessed on 25

November 2013).

[23] Pan, P.; Swallow, G.; Atlas, A. RFC4090: Fast Reroute Extensions to RSVP-TE for LSP

Tunnels, 2005. Available online: https://datatracker.ietf.org/doc/rfc4090/ (accessed on 22 July 2013).

[24] Atlas, A.; Zinin, A. RFC5286: Basic Specification for IP Fast Reroute: Loop-Free Alternates,

2008. Available online: https://tools.ietf.org/html/rfc5286 (accessed on 22 July 2013).

[25] OpenFlow Switch Consortium and Others. OpenFlow Switch Specification Version 1.2.0. 2011.

Available online: https://www.opennetworking.org/images/stories/downloads/sdn-resources/ onf

specifications/openflow/openflow-spec-v1.2.pdf (accessed on 25 November 2013).

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.27-48, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

43

@ECRTD-UK- https://www.eajournals.org/

[26] OpenFlow Switch Consortium and Others. OpenFlow Switch Specification Version 1.3.0. 2012.

Available online: https://www.opennetworking.org/images/stories/downloads/sdn-resources/ onf-

specifications/openflow/openflow-spec-v1.3.0.pdf (accessed on 25 November 2013).

[27] OpenFlow Switch Consortium and Others. OpenFlow Switch Specification Version 1.4.0. 2013.

Available online: https://www.opennetworking.org/images/stories/downloads/sdn-resources/ onf-

specifications/openflow/openflow-spec-v1.4.0.pdf (accessed on 12 January 2014).

[28] Gude, N.; Koponen, T.; Pettit, J.; Pfaff, B.; Casado, M.; McKeown, N.; Shenker, S. NOX:

Towards an Operating System for Networks. ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 105–

110.

[29] NOXrepo.org. Available online: http://www.noxrepo.org (accessed on 16 November 2013).

[30] Erickson, D. The Beacon OpenFlow Controller. In Proceedings of the ACM Workshop on Hot

Topics in Software Defined Networks (HotSDN), Hong Kong, China, 12–16 August 2013;13–18.

[31] Project Floodlight: Open Source Software for Building Software-Defined Networks. Available

online: http://www.projectfloodlight.org/floodlight/ (accessed on 16 November 2013).

[32] Cai, Z.; Cox, A.L.; Eugene Ng, T.S. Maestro: Balancing Fairness, Latency and Throughput in

the OpenFlow Control Plane; Technical Report; Rice University: Houston, TX, USA, 2011. NodeFLow

OpenFlow Controller. Available online: https://github.com/gaberger/NodeFLow (accessed on 16

November 2013).

[33] Trema: Full-Stack OpenFlow Framework in Ruby and C. Available online:

http://trema.github.io/trema/ (accessed on 16 November 2013).

[34] OpenDaylight. Available online: http://www.opendaylight.org/ (accessed on 22 February 2014).

[35] OpenFlow Switch Consortium and Others. Configuration and Management Protocol OF-

CONFIG 1.0. 2011. Available online: https://www.opennetworking.org/images/ stories/downloads/sdn-

resources/onf-specifications/openflow-config/of-config1dot0-final.pdf (accessed on 25 November

2013).

[36] Jain, S.; Kumar, A.; Mandal, S.; Ong, J.; Poutievski, L.; Singh, A.; Venkata, S.; Wanderer, J.;

Zhou, J.; Zhu, M.; et al. B4: Experience with a Globally-Deployed Software Defined WAN. In

Proceedings of the ACM SIGCOMM Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communication, Hong Kong, China, 13–17 August 2013; pp. 3–14.

[37] Kotani, D.; Suzuki, K.; Shimonishi, H. A Design and Implementation of OpenFlow Controller

handling IP Multicast with Fast Tree Switching. In Proceedings of the IEEE/IPSJ International

Symposium on Applications and the Internet (SAINT), Izmir, Turkey, 16–20 July 2012; 60–67.

[38] Nakao, A. FLARE: Open Deeply Programmable Network Node Architecture. Available online:

http://netseminar.stanford.edu/seminars/10_18_12.pdf 2012. (accessed on 24 January 2014).

[39] Reitblatt, M.; Foster, N.; Rexford, J.; Schlesinger, C.; Walker, D. Abstractions for Network

Update. In Proceedings of the ACM SIGCOMM Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communication, Helsinki, Finland, 13–17 August 2012; pp.

323–334.

[40] Mattos, D.; Fernandes, N.; da Costa, V.; Cardoso, L.; Campista, M.; Costa, L.; Duarte, O. OMNI:

OpenFlow MaNagement Infrastructure. In Proceedings of the International Conference on the Network

of the Future (NOF), Paris, France, 28–30 November 2011; pp. 52–56.

[41] Wang, R.; Butnariu, D.; Rexford, J. OpenFlow-Based Server Load Balancing Gone Wild. In

Proceedings of the USENIX Conference on Hot Topics in Management of Internet, Cloud, and

Enterprise Networks and Services (Hot-ICE), Boston, MA, USA, 29 March 2011; pp.12–12.

[42] Gember, A.; Prabhu, P.; Ghadiyali, Z.; Akella, A. Toward Software-Defined Middlebox

Networking. In Proceedings of the ACM Workshop on Hot Topics in Networks (HotNets), Redmond,

WA, USA, 29–30 October 2012; pp. 7–12.

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.27-48, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

44

@ECRTD-UK- https://www.eajournals.org/

[43] Initial Thoughts on Custom Network Processing via Waypoint Services. In Proceedings of the

Workshop on Infrastrucures for Software/Hardware Co-Design (WISH), Chamonix, France, 2 April

2011; pp. 15–20.

[44] ETSI—Network Functions Industry Specification Group. Network Functions Virtualisation

(NFV). 2013. Available online: http://portal.etsi.org/NFV/NFV_White_Paper2.pdf (accessed on 29

October 2013).

[45] Boucadair, M.; Jacquenet, C. Service Function Chaining: Framework & Architecture.

[46] Internet Draft (Intended Status: Standards Track), 2014. Available

 online: https://tools.ietf.org/search/draft-boucadair-sfc-framework-02 (accessed on 20 February

2014).

[47] John, W.; Pentikousis, K.; Agapiou, G.; Jacob, E.; Kind, M.; Manzalini, A.; Risso, F.; Staessens,

D.; Steinert, R.; Meirosu, C. Research Directions in Network Service Chaining. In Proceedings of the

IEEE Workshop on Software Defined Networks for Future Networks and Services (SDN4FNS), Trento,

Italy, 11–13 November 2013; pp. 1–7.

[48] Nayak, A.; Reimers, A.; Feamster, N.; Clark, R. Resonance: Inference-based Dynamic Access

Control for Enterprise Networks. In Proceedings of the Workshop on Research on Enterprise

Networking (WREN), Barcelona, Spain, 21 August 2009; pp. 11–18.

[49] Khurshid, A.; Zhou, W.; Caesar, M.; Godfrey, P.B. VeriFlow: Verifying Network-Wide

Invariants in Real Time. In Proceedings of the ACM Workshop on Hot Topics in Software Defined

Networks (HotSDN), Helsinki, Finland, 13–17 August 2012; pp. 49–54.

[50] Yao, G.; Bi, J.; Xiao, P. Source Address Validation Solution with OpenFlow/NOX Architecture.

In Proceedings of the IEEE International Conference on Network Protocols (ICNP), Vancouver, BC,

Canada, 17–20 October 2011; pp. 7–12.

[51] Jafarian, J.H.; Al-Shaer, E.; Duan, Q. Openflow Random Host Mutation: Transparent Moving

Target Defense Using Software Defined Networking. In Proceedings of the ACM Workshop on Hot

Topics in Software Defined Networks (HotSDN), Helsinki, Finland, 13–17 August 2012; pp. 127–132.

[52] YuHunag, C.; MinChi, T.; YaoTing, C.; YuChieh, C.; YanRen, C. A Novel Design for Future

On-Demand Service and Security. In Proceedings of the International Conference on Communication

Technology (ICCT), Nanjing, China, 11–14 November 2010; pp. 385–388.

[53] Braga, R.; Mota, E.; Passito, A. Lightweight DDoS Flooding Attack Detection Using

NOX/OpenFlow. In Proceedings of the IEEE Conference on Local Computer Networks (LCN), Denver,

CO, USA, 11–14 October 2010; pp. 408–415.

[54] Porras, P.; Shin, S.; Yegneswaran, V.; Fong, M.; Tyson, M.; Gu, G. A Security Enforcement

Kernel for OpenFlow Networks. In Proceedings of the ACM Workshop on Hot Topics in Software

Defined Networks (HotSDN), Helsinki, Finland, 13–17 August 2012; pp. 121–126.

[55] Handigol, N.; Heller, B.; Jeyakumar, V.; Maziéres, D.; McKeown, N. Where is the Debugger for

My Software-defined Network? In Proceedings of the ACM Workshop on Hot Topics in Software

Defined Networks (HotSDN), Helsinki, Finland, 13–17 August 2012; pp. 55–60.

[56] Wundsam, A.; Levin, D.; Seetharaman, S.; Feldmann, A. OFRewind: Enabling Record and

Replay Troubleshooting for Networks. In Proceedings of the USENIX Annual Technical Conference,

Portland, OR, USA, 15–17 June 2011.

[57] Kuzniar, M.; Peresini, P.; Canini, M.; Venzano, D.; Kostic, D. A SOFT Way for Openflow

Switch Interoperability Testing. In Proceedings of the ACM Conference on emerging Networking

EXperiments and Technologies (CoNEXT), Nice, France, 10–13 December 2012; pp. 265–276.

[58] Canini, M.; Venzano, D.; Perešíni, P.; Kostic,´ D.; Rexford, J. A NICE Way to Test Openflow

Applications. In Proceedings of the USENIX Syposium on Networked Systems Design &

Implementation (NSDI), San Jose, CA, USA, 25–27 April 2012.

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.27-48, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

45

@ECRTD-UK- https://www.eajournals.org/

[59] Heller, B.; Scott, C.; McKeown, N.; Shenker, S.; Wundsam, A.; Zeng, H.; Whitlock, S.;

Jeyakumar, V.; Handigol, N.; McCauley, J.; et al. Leveraging SDN Layering to Systematically

Troubleshoot Networks. In Proceedings of the ACM Workshop on Hot Topics in Software Defined

Networks (HotSDN), Hong Kong, China, 12–16 August 2013; pp. 37–42.

[60] Nascimento, M.R.; Rothenberg, C.E.; Salvador, M.R.; Magalhães, M.F. QuagFlow: Partnering

Quagga with OpenFlow. ACM SIGCOMM Comput. Commun. Rev. 2010, 40, 441–442.

[61] Nascimento, M.R.; Rothenberg, C.E.; Salvador, M.R.; Corrêa, C.N.A.; de Lucena, S.;

Magalhães, M.F. Virtual Routers as a Service: The Routeflow Approach Leveraging Software-Defined

Networks. In Proceedings of the International Conference on Future Internet Technologies (CFI), Seoul,

Korea, 13–15 June 2011; pp. 34–37.

[62] Bennesby, R.; Fonseca, P.; Mota, E.; Passito, A. An Inter-AS Routing Component for Software-

Defined Networks. In Proceedings of the IEEE/IFIP Network Operations and Management Symposium

(NOMS), Maui, HI, USA, 16–20 April 2012; pp. 138–145.

[63] Caesar, M.; Caldwell, D.; Feamster, N.; Rexford, J.; Shaikh, A.; van der Merwe, J. Design and

Implementation of a Routing Control Platform. In Proceedings of the USENIX Syposium on Networked

Systems Design & Implementation (NSDI), Boston, MA, USA, 2–4 May 2005; pp. 15–28.

[64] Rothenberg, C.E.; Nascimento, M.R.; Salvador, M.R.; Corrêa, C.N.A.; de Lucena, S.C.; Raszuk,

R. Revisiting Routing Control Platforms with the Eyes and Muscles of Software-Defined Networking.

In Proceedings of the ACM Workshop on Hot Topics in Software Defined Networks (HotSDN),

Helsinki, Finland, 13–17 August 2012; pp. 13–18.

[65] Sharafat, A.R.; Das, S.; Parulkar, G.; McKeown, N. MPLS-TE and MPLS VPNS with

OpenFlow. ACM SIGCOMM Comput. Commun. Rev. 2011, 41, 452–453.

[66] Azodolmolky, S.; Nejabati, R.; Escalona, E.; Jayakumar, R.; Efstathiou, N.; Simeonidou, D.

Integrated OpenFlow-GMPLS Control Plane: An Overlay Model for Software Defined Packet Over

Optical Networks. In Proceedings of the European Conference and Exposition on Optical

Communications, Geneva, Switzerland, 18–22 September 2011.

[67] Gutz, S.; Story, A.; Schlesinger, C.; Foster, N. Splendid Isolation: A Slice Abstraction for

Software-Defined Networks. In Proceedings of the ACM Workshop on Hot Topics in Software Defined

Networks (HotSDN), Helsinki, Finland, 13–17 August 2012; pp. 79–84.

[68] Ferguson, A.D.; Guha, A.; Liang, C.; Fonseca, R.; Krishnamurthi, S. Hierarchical Policies for

Software Defined Networks. In Proceedings of the ACM Workshop on Hot Topics in Software Defined

Networks (HotSDN), Helsinki, Finland, 13–17 August 2012; pp. 37–42.

[69] Banikazemi, M.; Olshefski, D.; Shaikh, A.; Tracey, J.; Wang, G. Meridian: An SDN Platform

for Cloud Network Services. IEEE Commun. Mag. 2013, 51, 120–127.

[70] The OpenStack Foundatation. 2013. Available online: http://www.openstack.org/ (accessed on

22 July 2013).

[71] Heller, B.; Sherwood, R.; McKeown, N. The Controller Placement Problem. In Proceedings of

the ACM Workshop on Hot Topics in Software Defined Networks (HotSDN), Helsinki, Finland, 13–17

August 2012; pp. 7–12.

[72] Hock, D.; Hartmann, M.; Gebert, S.; Jarschel, M.; Zinner, T.; Tran-Gia, P. Pareto-Optimal

Resilient Controller Placement in SDN-based Core Networks. In Proceedings of the 25th International

Teletraffic Congress (ITC), Shanghai, China, 10–12 September 2013; pp. 1–9.

[73] Tootoonchian, A.; Ganjali, Y. HyperFlow: A Distributed Control Plane for OpenFlow. In

Proceedings of the USENIX Workshop on Research on Enterprise Networking (WREN), San Jose, CA,

USA, 27 April 2010; p. 3.

[74] Yeganeh, S.H.; Ganjali, Y. Kandoo: A Framework for Efficient and Scalable Offloading of

Control Applications. In Proceedings of the ACM Workshop on Hot Topics in Software Defined

Networks (HotSDN), Helsinki, Finland, 13–17 August 2012; pp. 19–24.

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.27-48, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

46

@ECRTD-UK- https://www.eajournals.org/

[75] Levin, D.; Wundsam, A.; Heller, B.; Handigol, N.; Feldmann, A. Logically Centralized?: State

Distribution Trade-offs in Software Defined Networks. In Proceedings of the ACM Workshop on Hot

Topics in Software Defined Networks (HotSDN), Helsinki, Finland, 13–17 August 2012; pp. 1–6.

[76] Jarschel, M.; Oechsner, S.; Schlosser, D.; Pries, R.; Goll, S.; Tran-Gia, P. Modeling and

Performance Evaluation of an OpenFlow Architecture. In Proceedings of the International Teletraffic

Congress (ITC), San Francisco, CA, USA, 6–8 September 2011; pp. 1–7.

[77] Fernandez, M.P. Comparing OpenFlow Controller Paradigms Scalability: Reactive and

Proactive. In Proceedings of the International Conference on Advanced Information Networking and

Applications (AINA), Barcelona, Spain, 25–28 March 2013; pp. 1009–1016.

[78] CIDR REPORT. Available online: http://www.cidr-report.org/as2.0/ 2013. (accessed on 22 July

2013).

[79] Sarrar, N.; Uhlig, S.; Feldmann, A.; Sherwood, R.; Huang, X. Leveraging Zipf’s Law for Traffic

Offloading. ACM SIGCOMM Comput. Commun. Rev. 2012, 42, 16–22.

[80] Sarrar, N.; Feldmann, A.; Uhrig, S.; Sherwood, R.; Huang, X. Towards Hardware Accelerated

Software Routers. In Proceedings of the ACM CoNEXT Student Workshop, Philadelphia, PA, USA, 3

December 2010; pp. 1–2.

[81] Soliman, M.; Nandy, B.; Lambadaris, I.; Ashwood-Smith, P. Source Routed Forwarding with

Software Defined Control, Considerations and Implications. In Proceedings of the ACM CoNEXT

Student Workshop, Nice, France, 10–13 December 2012; pp. 43–44.

[82] Ashwood-Smith, P.; Soliman, M.; Wan, T. SDN State Reduction. Internet Draft (Informational),

2013. Available online: https://tools.ietf.org/html/draft-ashwood-sdnrg-state-reduction-00 (accessed on

25 November 2013).

[83] Zhang, X.; Francis, P.; Wang, J.; Yoshida, K. Scaling IP Routing with the Core Router-Integrated

Overlay. In Proceedings of the IEEE International Conference on Network Protocols (ICNP), Santa

Barbara, CA, USA, 12–15 November 2006; pp. 147–156.

[84] Ballani, H.; Francis, P.; Cao, T.; Wang, J. ViAggre: Making Routers Last Longer! In Proceedings

of the ACM Workshop on Hot Topics in Networks (HotNets), Calgary, AB, Canada, 6–7 October 2008;

pp. 109–114.

[85] 86. Francis, P.; Xu, X.; Ballani, H.; Jen, D.; Raszuk, R.; Zhang, L.

 FIB Suppression with Virtual Aggregation. IETF Internet Draft (Informational), 2012.

 Available online: http://wiki.tools.ietf.org/html/draft-ietf-grow-va-06 (accessed on 16

November 2013).

[86] Masuda, A.; Pelsser, C.; Shiomoto, K. SpliTable: Toward Routing Scalability through

Distributed BGP Routing Tables. IEICE Trans. Commun. 2011, E94-B, 64–76.

[87] Rètvàri, G.; Tapolcai, J.; Kõrösi, A.; Majdàn, A.; Heszberger, Z. Compressing IP Forwarding

Tables: Towards Entropy Bounds and Beyond. In Proceedings of the ACM SIGCOMM Workshop on

Hot Topics in Software Defined Networking (HotSDN), Hong Kong, China, 12–16 August 2013; pp.

111–122.

[88] Ford, A.; Raicu, C.; Handley, M.; Bonaventure, O. RFC6824: TCP Extensions for Multipath

Operation with Multiple Addresses. IETF Internet Draft (Experimental), 2013. Available online:

http://tools.ietf.org/html/rfc6824 (accessed on 22 February 2014).

[89] Sharma, S.; Staessens, D.; Colle, D.; Pickavet, M.; Demeester, P. OpenFlow: Meeting Carrier-

Grade Recovery Requirements. Comput. Commun. 2013, 36, 656–665.

[90] Kempf, J.; Bellagamba, E.; Kern, A.; Jocha, D.; Takàcs, A.; Sköldström, P. Scalable Fault

Management for OpenFlow. In Proceedings of the IEEE International Conference on Communications

(ICC), Ottawa, ON, Canada, 10–15 June 2012; pp. 6606–6610.

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.27-48, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

47

@ECRTD-UK- https://www.eajournals.org/

[91] Mogul, J.C.; Congdon, P. Hey, You Darned Counters!: Get off my ASIC! In Proceedings of the

ACM Workshop on Hot Topics in Software Defined Networks (HotSDN), Helsinki, Finland, 13–17

August 2012; pp. 25–30.

[92] Narayanan, R.; Kotha, S.; Lin, G.; Khan, A.; Rizvi, S.; Javed, W.; Khan, H.; Khayam, S.A.

Macroflows and Microflows: Enabling Rapid Network Innovation through a Split SDN Data Plane. In

Proceedings of the European Workshop on Software Defined Networks (EWSDN), Darmstadt,

Germany, 25–26 October 2012; pp. 79–84.

[93] Lu, G.; Miao, R.; Xiong, Y.; Guo, C. Using Cpu as a Traffic Co-Processing Unit in Commodity

Switches. In Proceedings of the ACM Workshop on Hot Topics in Software Defined Networks

[94] (HotSDN), Helsinki, Finland, 13–17 August 2012; pp. 31–36.

[95] Chiba, Y.; Shinohara, Y.; Shimonishi, H. Source Flow: Handling Millions of Flows on

Flow-Based Nodes. In Proceedings of the ACM SIGCOMM, New Delhi, India, 30 August–2 September

2010; pp. 465–466.

[96] Bianco, A.; Birke, R.; Giraudo, L.; Palacin, M. Openflow Switching: Data Plane Performance.

In Proceedings of the IEEE International Conference on Communications (ICC), Cape Town, South

Africa, 23–27 May 2010; pp. 1–5.

[97] Draves, R.; King, C.; Srinivasan, V.; Zill, B. Constructing Optimal IP Routing Tables. In

Proceedings of the IEEE Infocom, New York, NY, USA, 21–25 March 1999; pp. 88–90

[98] Liu, A.X.; Meiners, C.R.; Torng, E. TCAM Razor: A Systematic Approach Towards Minimizing

Packet Classifiers in TCAMs. IEEE/ACM Trans. Netw. 2010, 18, 490–500.

[99] Meiners, C.R.; Liu, A.X.; Torng, E. Bit Weaving: A Non-Prefix Approach to Compressing

Packet Classifiers in TCAMs. IEEE/ACM Trans. Netw. 2012, 20, 488–500.

[100] McGeer, R.; Yalagandula, P. Minimizing Rulesets for TCAM Implementation. In Proceedings

of the IEEE Infocom, Rio de Janeiro, Brazil, 19–25 April 2009; pp. 1314–1322.

[101] Yu, M.; Rexford, J.; Freedman, M.J.; Wang, J. Scalable Flow-Based Networking with DIFANE.

ACM SIGCOMM Comput. Commun. Rev. 2010, 40, 351–362 .

[102] D. Kreutz et al., “Software-Defined Networking: A Comprehensive Survey,” Proc. IEEE, vol.

103, no. 1, Jan. 2015, pp. 14–76.

[103] NM M. K. Chowdhury and R. Boutaba, “A Survey of Network Virtualiza-tion,” Elsevier Comp.

Networks J., vol. 54, no. 5, Apr. 2010, pp. 862–76.

[104] ETSI NFV ISG, “Network Function Virtualization — Introduction White Paper,” Proc. SDN

and OpenFlow World Congress, Oct. 2012.

[105] J. Liu et al., “Device-to-Device Communications for Enhancing Quality of Experience in

Software Defined Multi-Tier LTE-A Networks,” IEEE Network, vol. 29, no. 4, July 2015, pp. 46–52.

[106] M. Casado et al., “Fabric: A Retrospective on Evolving SDN,” Proc. 1st Wksp. Hop Topics in

Software-Defined Networks, Aug. 2012.

[107] M. Casado et al., “Software-Defined Internet Architecture: Decoupling Architecture from

Infrastructure,” Proc. 11th ACM Wksp. Hot Topics in Networks, Oct. 2012.

[108] R. Sherwood et al., “FlowVisor: A Network Virtualization Layer,” Open-Flow Switch

Consortium, tech. rep, 2009.

[109] D. Drutskoy, E. Keller, and J. Rexford, “Scalable Network Virtualization in Software-Defined

Networks,” IEEE Internet Comp., vol. 17, no. 2, Mar. 2013, pp. 20–27.

[110] T. Wood et al., “Toward a Software-Based Network: Integrating Software Defined Networking

and Network Function Virtualization,” IEEE Network, vol. 29, no. 3, May 2015, pp. 36–41.

[111] W. Ding et al., “OpenSCaaS: an Open Service Chain as a Service Plat-form toward the

Integration of SDN and NFV,” IEEE Network, vol. 29, no. 3, May 2015, pp. 30–35.

[112] J. Matias et al., “Toward an SDN-Enabled NFV Architecture,” IEEE Com-mun. Mag., vol. 53,

no. 4, Apr. 2015, pp. 187–93.

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.27-48, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

48

@ECRTD-UK- https://www.eajournals.org/

[113] Open Network Foundation, “ONF Techical Report TR-518: Relationship of SDN and NFV,”

Oct. 2015.

[114] ETSI NFV ISG, “NFV-EVE005: SDN Usage in NFV Architectural Frame-work,” Oct. 2015.

[115] Fischer et al., “Virtual Network Embedding: A Survey,” IEEE Commun. Surveys & Tutorials,

vol. 15, no. 4, 4th qtr. 2013, pp. 1888–1906

[116] Q. Duan, Y. Yan, and A. V. Vasilakos, “A Survey on Service-Oriented Network Virtualization

toward Convergence of Networking and Cloud Computing,” IEEE Trans. Network Service Mgmt., vol.

9, no. 4, Dec. 2012, pp. 373–92

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.27-48, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965

(Online)

49

@ECRTD-UK- https://www.eajournals.org/

https://www.eajournals.org/

