Approximate Solution of the Fractional Order Mathematical Model on the Transmission Dynamics on The Co-Infection of COVID-19 and Monkeypox Using the Laplace-Adomian Decomposition Method

Acheneje, G. \mathbf{O}^{1}, Omale, D 1, Agbata, B.C ${ }^{2, *}$, Atokolo, \mathbf{W}^{1}, Shior, M.M. ${ }^{3}$, Bolarinwa, B ${ }^{1,4}$
${ }^{1}$ Department of Mathematics, Prince Abubakar Audu University, Anyigba, Nigeria.
${ }^{2}$ Department of Mathematics and Statistics, Confluence University of Science and Technology, Osara. Nigeria
${ }^{3}$ Department of Mathematics/ Computer Science, Benue State University Makurdi, Nigeria
${ }^{4}$ Laboratory of Mathematical Epidemiology, Prince Abubakar Audu University, Anyigba.
Corresponding author: agbatabc@custech.edu.ng

doi: https://doi.org/10.37745/ijmss.13/vol12n31751
Published April 10, 2024

Acheneje, G.O., Omale, D., Agbata, B.C., Atokolo, W., Shior, M.M., Bolarinwa, B (2024) Approximate Solution of the Fractional Order Mathematical Model on the Transmission Dynamics on The Co-Infection of COVID-19 and Monkeypox Using the Laplace-Adomian Decomposition Method, International Journal of Mathematics and Statistics Studies, 12 (3), 17-51

Abstract

A fractional order compartmental model on the transmission dynamics of the coinfection of COVID-19 and Monkeypox is presented. The approximate solutions of the fractional order model are obtained using the Laplace-Adomian Decomposition method in the form of an infinite series which was shown to converge to the exact value. Using the MATLAB fmincon algorithm, we carried out a data fitting analysis using real life COVID-19 and Monkeypox data so as to obtain estimates for some of the key parameters used in the formulation of model. The results of our analysis showed that an increase in the effective treatment capacity in the human population will significantly reduce the burden of these diseases in the human population.

KEYWORDS: Approximate solution, fractional order mathematical model, transmission dynamics, the co-infection of COVID-19, monkeypox, laplace-adomian decomposition method

Website: https://www.eajournals.org/
Publication of the European Centre for Research Training and Development -UK

INTRODUCTION

COVID-19, a transmissible illness instigated by the SARS-CoV-2 virus, emerged initially in Wuhan, China, in December 2019. It swiftly propagated globally, culminating in the COVID-19 pandemic. [1] COVID-19 spreads when contagious particles are inhaled or make contact with the eyes, nose, or mouth. The highest risk occurs in close proximity, but tiny airborne particles carrying the virus can linger in the air and travel farther, especially indoors. Transmission can also happen through touching surfaces or objects contaminated by the virus and subsequently touching the eyes, nose, or mouth. Contagiousness can last for up to 20 days, and individuals can transmit the virus even without displaying symptoms. [2] In community and healthcare environments, the utilization of face masks and hand sanitizers serves as a means of source containment to minimize the spread of the virus and as a precautionary measure to avert infection. Appropriately utilized face masks not only restrict the dissemination of respiratory droplets and aerosols from individuals who are infected but also safeguard uninfected individuals from contracting the virus. [3]

Mpox (previously identified as monkeypox) is a contagious viral illness that can manifest in humans and certain other creatures.[4] Manifestations comprise a skin eruption leading to blistering followed by crust formation, elevated body temperature, and enlarged lymph glands. Typically, the ailment is mild, and the majority of affected individuals will recuperate spontaneously within a couple of weeks, even without medical intervention. [5] The disease is caused by the monkeypox virus, a zoonotic virus in the genus Orthopoxvirus. The variola virus, the causative agent of the disease smallpox, is also in this genus. [4] There isn't a particular remedy for the illness, although antiviral drugs like tecovirimat have been sanctioned for severe mpox treatment. [6] A Cochrane analysis in 2023 revealed no concluded randomized controlled studies examining therapies for Mpox. Instead, it highlighted non-randomized controlled trials assessing the safety of Mpox treatments, indicating no major risks from tecovirimat and limited evidence suggesting brincidofovir could induce mild liver damage. [7]

Mathematical model serves as an invaluable tool in studying and analyzing the transmission dynamics of contagious diseases within a population, thus several models have been developed by various authors in a bid to make recommendations to health care personnel so as to reduce the disease burdens of infectious diseases within any population. For instance Atokolo et. al. [8] introduced a fractional order sterile insect technology (SIT) model to combat Zika virus transmission, employing the Laplace-Adomian decomposition method (LADM) to derive an analytical solution. They demonstrated that the fractional model offers greater flexibility, allowing for varied responses by adjusting the fractional order. Their work contributes to the literature by showcasing the applicability of LADM in solving SIT models, a novel approach in the field. Atokolo et al.[9] examined the impact of parameter values $(\theta, \varphi, \mathrm{h}$, and γ) on reducing the basic reproduction number (R0) of COVID-19, suggesting that adjusting these parameters could lead to

Website: https://www.eajournals.org/
Publication of the European Centre for Research Training and Development -UK
the eventual elimination of the disease from the population. Their numerical simulations indicated that proper adherence to control measures such as social distancing, hand hygiene, and coughing etiquette could contribute to the eradication of the disease over time. Additionally, increasing rates of quarantine and isolation for suspected and confirmed cases were found to be effective in reducing the spread of the pandemic.

Model Formulation

A deterministic compartmental model on the transmission dynamics of the co-infection of COVID-19 and Monkeypox disease is been proposed. The model comprises of two populations, which are the human population and the rodent population as the reservoirs.

We further sub-divide the human population into ten compartments, namely, Susceptible humans $S_{h}(t)$, Exposed COVID-19 humans $E_{c}(t)$, Exposed monkey pox humans $E_{m}(t)$, Infected COVID-19 humans $I_{c}(t)$, Infected monkey pox humans $I_{m}(t)$, quarantined COVID-19 humans $Q_{c}(t)$, Quarantined monkey pox humans $Q_{m}(t)$, Treated class of humans $T(t)$, and Recovered class of humans $R(t)$. The rodent population is sub-divided into three compartments, namely, susceptible rodents $S_{r}(t)$, Exposed rodents $E_{r}(t)$, and infected rodents $I_{r}(t)$.

The recruitment rate of individuals into the susceptible population is denoted as π_{h}. β_{c} represents the effective contact rate, indicating the likelihood of humans contracting COVID-19 per contact with an infected person. Similarly, β_{1} signifies the effective contact rate for humans acquiring Monkeypox through contact with an infected rodent. β_{m} denotes the effective contact rate for humans contracting Monkeypox from an infected individual, while β_{r} stands for the effective contact rate with the probability of rodents getting infected with Monkeypox through contact with an infected rodent.

The progression rate of individuals exposed to COVID-19 into the infected COVID-19 Population is $\theta_{1} . \theta_{2}$ is the progression rate of individuals exposed to Monkeypox into the infected Monkeypox compartment. ϕ_{1} and ϕ_{2} are the rates at which individuals exposed to COVID-19 and Monkeypox are moved to the quarantined COVID-19 and quarantined monkeypox center respectively. The natural death rate of the human population is μ_{h}. The disease induced death rate of the infected and quarantined COVID-19 individuals is δ_{1}. The disease induced death rate of the infected and quarantined Monkeypox individuals is δ_{2}. The disease induced death rate of the individuals in the co-infection compartment is δ_{3}. The disease induced death rate of the individuals in the treated

Website: https://www.eajournals.org/
Publication of the European Centre for Research Training and Development -UK
class is $\delta_{4} . \psi$ is the modification parameter that accounts for reduced disease induced death rate in the treatment class.

The force of infection for the human-to-human COVID-19 transmission is given as

$$
\lambda_{1}=\frac{\beta_{c}\left(I_{c}+I_{c m}\right)}{N_{h}}
$$

The force of infection for the human-to-human with the rodent-to-human Monkeypox transmission is given as

$$
\lambda_{2}=\frac{\beta_{1} I_{r}+\beta_{m}\left(I_{m}+I_{c m}\right)}{N_{h}}
$$

The force of infection for the rodents-to-rodents disease transmission is given as

$$
\lambda_{3}=\frac{\beta_{r} I_{r}}{N_{r}} .
$$

After medical diagnosis, the undetected proportion of the quarantined population which do not show clinical symptoms of the diseases, namely, COVID-19 and Monkeypox are returned to the susceptible population at the rate of ω_{1} and ω_{2} respectively. γ_{4} and γ_{5} are the rates at which individuals that show clinical symptoms to COVID-19 and Monkeypox are moved to the treated class respectively. The incidence of individuals contracting both COVID-19 and Monkeypox infections is determined by the parameter $\tau_{1} \cdot \tau_{2}$ is the rate at which individuals infected with Monkeypox only becomes also infected with COVID-19. γ_{1}, γ_{2} and γ_{3} are the rates at which infected COVID-19 individuals, infected Monkeypox individuals, and co-infected COVID-19 and Monkeypox individuals respectively are been moved to the treated class. ε is the rate at which individuals in the treated class respond positively to treatment and progress to the recovery class. α is the waning rate of recovered COVID-19 individuals (i.e. the rate at which recovered COVID19 individuals becomes susceptible to it again).

The recruitment rate of rodents into the rodents population is given by π_{r}. The progression rate of rodents exposed to Monkeypox into the infected class is denoted by θ_{3}. The natural death rate and the disease induced death rates of the rodents population are μ_{r} and δ_{r} respectively.
The total human population is given as

$$
N_{h}(t)=S_{h}(t)+E_{c}(t)+E_{m}(t)+Q_{c}(t)+Q_{m}(t)+I_{c}(t)+I_{m}(t)+I_{c m}(t)+T(t)+R(t)
$$

The total rodents population is given as

$$
N_{r}(t)=S_{r}(t)+E_{r}(t)+I_{r}(t)
$$

Website: https://www.eajournals.org/

Figure 1: Model Flow Diagram.

Model Assumptions

The assumptions used in the formulation of the model are:
(i.) No transmission of the infection(s) occurs vertically from mother to unborn child. [10]
(ii.) There is homogeneous mixing which implies that all susceptible individuals equally risk infection upon contact with those who are infectious.
(iii.) Disease-induced fatalities occur exclusively in the infectious compartments, with a consistent natural death rate across all compartments.
(iv.) The rodent population can spread only Monkeypox and not COVID-19. [11]
(v.) Individuals who have recovered from COVID-19 can become susceptible to the virus once more. [12]

Parameters	Description		
π_{h}	Human recruitment rate		
π_{r}	Rodents recruitment rate		
β_{c}	Contact rate of susceptible and Infected COVID-19 humans		
β_{m}	Contact rate of susceptible humans and Infected Monkeypox humans β_{1}		
β_{r}	Contact rate of susceptible humans and Infected Rodents		
λ_{1}	lontact rate of susceptible rodents and Infected Rodents		
λ_{2}	Force of Infection for COVID-19 Infection		
λ_{3}	Force of Infection for Monkeypox Infection amongst humans		
ω_{1}	Force of Infection for Monkeypox Infection amongst Rodents		
ω_{2}	Progression rate from Quarantine COVID-19 individual to susceptible humans		
ϕ_{1}	Rate of progression from Quarantine monkeypox individual to susceptible humans		
ϕ_{2}	Progression rate from exposed COVID-19 individual to Quarantine COVID-19 humans		
θ_{1}	Progression rate from exposed monkeypox individual to Quarantine monkeypox humans		
θ_{2}	Progression rate from exposed COVID-19 individual to Infected COVID-19 humans		
θ_{3}	Progression rate from exposed monkeypox individual to Infected monkeypox humans		
γ_{1}	Progression rate from exposed Monkeys to Infected Rodents		Treatment rate of Infected COVID-19
:---			
individuals			

Website: https://www.eajournals.org/
Publication of the European Centre for Research Training and Development -UK

γ_{2}	Treatment rate of Co-Infected COVID-19 and monkeypox individuals
γ_{3}	Treatment rate of Infected Monkeypox individuals
γ_{4}	Treatment rate of Quarantined COVID-19 individuals
γ_{5}	Treatment rate of Quarantined Monkeypox individuals
τ_{1}	Rate at which infected COVID-19 individuals become infected with Monkeypox
τ_{2}	Rate at which infected monkeypox individuals become infected with COVID-19
ε	Recovery rate of treated Class
α	Waning rate of COVID-19 individuals
μ_{h}	Natural death rate of humans
μ_{r}	Natural death rate of rodents
δ_{1}	Disease induced death rate of infected and quarantined COVID-19 individuals
δ_{2}	Disease induced death rate of infected and quarantined Monkeypox individuals
δ_{3}	Disease induced death rate of co-infected individuals
δ_{4}	Disease induced death rate of individuals in the treatment class
ψ	Modification parameter addressing reduced death rate in the treatment class
δ_{r}	Disease induced death rate of humans

Table 1: Description of Parameters

Variable	Description
$S_{h}(t)$	Susceptible humans population
$S_{r}(t)$	Susceptible rodents population
$E_{c}(t)$	Exposed COVID-19 population
$E_{m}(t)$	Exposed human Monkeypox Population
$E_{r}(t)$	Exposed rodents population to Monkeypox

$Q_{c}(t)$	Quarantined COVID-19 population
$Q_{m}(t)$	Quarantined human Monkeypox population
$I_{c}(t)$	Infected COVID-19 Population
$I_{m}(t)$	Infected Monkeypox human population
$I_{r}(t)$	Infected rodents population
$I_{c m}(t)$	Population of co-infected COVID-19 and Monkeypox humans
$T(t)$	Treated Class of humans
$R(t)$	Recovered Class

Table 2: Description of Variables

Model Equations

In the light of the description of the model above, we obtained the differential equations modeling the co-infection transmission dynamics of COVID-19 and Monkeypox as follows:

$$
\begin{align*}
& \frac{d S_{h}}{d t}=\pi_{h}+\alpha R+\omega_{1} Q_{c}+\omega_{2} Q_{m}-\left(\lambda_{1}+\lambda_{2}+\mu_{h}\right) S_{h}, \\
& \frac{d E_{c}}{d t}=\lambda_{1} S_{h}-\left(\phi_{1}+\theta_{1}+\mu_{h}\right) E_{c}, \\
& \frac{d E_{m}}{d t}=\lambda_{2} S_{h}-\left(\phi_{2}+\theta_{2}+\mu_{h}\right) E_{m}, \\
& \frac{d Q_{c}}{d t}=\phi_{1} E_{c}-\left(\omega_{1}+\gamma_{4}+\delta_{1}+\mu_{h}\right) Q_{c}, \\
& \frac{d Q_{m}}{d t}=\phi_{2} E_{m}-\left(\omega_{2}+\gamma_{5}+\delta_{2}+\mu_{h}\right) Q_{m}, \\
& \frac{d I_{c}}{d t}=\theta_{1} E_{c}-\left(\tau_{1}+\gamma_{1}+\delta_{1}+\mu_{h}\right) I_{c}, \\
& \frac{d I_{m}}{d t}=\theta_{2} E_{m}-\left(\tau_{2}+\gamma_{3}+\delta_{2}+\mu_{h}\right) I_{m}, \\
& \frac{d I_{c m}}{d t}=\tau_{1} I_{c}+\tau_{2} I_{m}-\left(\gamma_{2}+\delta_{3}+\mu_{h}\right) I_{c m}, \\
& \frac{d T}{d t}=\gamma_{1} I_{c}+\gamma_{2} I_{c m}+\gamma_{3} I_{m}+\gamma_{4} Q_{c}+\gamma_{5} Q_{m}-\left(\varepsilon+\psi \delta_{4}+\mu_{h}\right) T, \\
& \frac{d R}{d t}=\varepsilon T-\left(\alpha+\mu_{h}\right) R, \\
& \frac{d S_{r}}{d t}=\pi_{r}-\left(\lambda_{3}+\mu_{r}\right) S_{r}, \tag{1}\\
& \frac{d E_{r}}{d t}=\lambda_{3} S_{r}-\left(\theta_{3}+\mu_{r}\right) E_{r}, \\
& \frac{d I_{r}}{d t}=\theta_{3} E_{r}-\left(\delta_{r}+\mu_{r}\right) I_{r} .
\end{align*}
$$

Where $\lambda_{1}=\frac{\beta_{c}\left(I_{c}+I_{c m}\right)}{N_{h}}, \lambda_{2}=\frac{\beta_{1} I_{r}+\beta_{m}\left(I_{m}+I_{c m}\right)}{N_{h}}, \lambda_{3}=\frac{\beta_{r} I_{r}}{N_{r}}$ are the forces of infection.

Fractional Order of the COVID-19 - Monkeypox Co-infection Model

The Caputo derivative is measured as a differential operator in our model. We present in this segment some well-known definitions and effects that we shall be using throughout this research.

Definition 1 The Caputo fractional order derivative of a function (f) on the interval [O, T] is defined by:
$\left[{ }^{c} D_{0}^{\beta} f(t)\right]=\frac{1}{\Gamma(n-\beta)} \int_{0}^{t}(t-s)^{n-\beta-1} f^{(n)}(s) d s$,

Where $n=[\beta]+1$ and $[\beta]$ represents the integer part of β. In particular, for $0<\beta<1$, the Caputo derivative becomes:
$\left[{ }^{c} D_{0}^{\beta} f(t)\right]=\frac{1}{\Gamma(1-\beta)} \int_{0}^{t} \frac{f(s)}{(t-s)^{\beta}} d s$,

Definition 2 Laplace transform of Caputo derivatives is defined as

$$
\begin{equation*}
\mathcal{L}\left[{ }^{C} D^{\beta} q(t)\right]=S^{\beta} h(S)-\sum_{K=0}^{n} S^{\beta-i-1} y^{k}(0), \quad n-1<\beta<n, n \in N \tag{4}
\end{equation*}
$$

For arbitrary $c_{i} \in R, i=0,1,2, \ldots n-1, n=[\beta]+1$ and $[\beta]$ represents the non-integer part of β.

Lemma 1. The following results hold for fractional differentiation equations
$I^{\beta}\left[{ }^{c} D^{\beta} h\right](t)=h(t)+\sum_{i=0}^{n-1} \frac{h^{(t)}(0)}{i!} t^{i}$,

For arbitrary $\beta>0, i=0,1,2, \ldots, n-1$, where $n=[\beta]+1$ and $[\beta]$ represents the integer part of β

Introducing fractional-order into the model, we now present a new model described by the following Introducing fractional order derivative into the model we present new mathematical model describe by set of fractional difference of order β for $0<\beta<1$

$$
\begin{align*}
& D^{\beta}\left(S_{h}\right)=\pi_{h}+\alpha R+\omega_{1} Q_{c}+\omega_{2} Q_{m}-\left(\lambda_{1}+\lambda_{2}+\mu_{h}\right) S_{h}, \\
& D^{\beta}\left(E_{c}\right)=\lambda_{1} S_{h}-\left(\phi_{1}+\theta_{1}+\mu_{h}\right) E_{c}, \\
& D^{\beta}\left(E_{m}\right)=\lambda_{2} S_{h}-\left(\phi_{2}+\theta_{2}+\mu_{h}\right) E_{m}, \\
& D^{\beta}\left(Q_{c}\right)=\phi_{1} E_{c}-\left(\omega_{1}+\gamma_{4}+\delta_{1}+\mu_{h}\right) Q_{c}, \\
& D^{\beta}\left(Q_{m}\right)=\phi_{2} E_{m}-\left(\omega_{2}+\gamma_{5}+\delta_{2}+\mu_{h}\right) Q_{m}, \\
& D^{\beta}\left(I_{c}\right)=\theta_{1} E_{c}-\left(\tau_{1}+\gamma_{1}+\delta_{1}+\mu_{h}\right) I_{c}, \\
& D^{\beta}\left(I_{m}\right)=\theta_{2} E_{m}-\left(\tau_{2}+\gamma_{3}+\delta_{2}+\mu_{h}\right) I_{m}, \\
& D^{\beta}\left(I_{c m}\right)=\tau_{1} I_{c}+\tau_{2} I_{m}-\left(\gamma_{2}+\delta_{3}+\mu_{h}\right) I_{c m}, \\
& D^{\beta}(T)=\gamma_{1} I_{c}+\gamma_{2} I_{c m}+\gamma_{3} I_{m}+\gamma_{4} Q_{c}+\gamma_{5} Q_{m}-\left(\varepsilon+\psi \delta_{4}+\mu_{h}\right) T, \\
& D^{\beta}(R)=\varepsilon T-\left(\alpha+\mu_{h}\right) R, \\
& D^{\beta}\left(S_{r}\right)=\pi_{r}-\left(\lambda_{3}+\mu_{r}\right) S_{r}, \\
& D^{\beta}\left(E_{r}\right)=\lambda_{3} S_{r}-\left(\theta_{3}+\mu_{r}\right) E_{r}, \\
& D^{\beta}\left(I_{r}\right)=\theta_{3} E_{r}-\left(\delta_{r}+\mu_{r}\right) I_{r} . \tag{6}
\end{align*}
$$

The Laplace-Adomian Decomposition Method (LADM) Implementation

We considered the general procedure of this method with the initial conditions. Applying Laplace transforms to both sides of the equation (1), and then we have:

$$
\begin{align*}
& S^{\beta} \mathcal{L}\left(S_{h}\right)-S^{\beta-1} S_{h}(0)=\mathcal{L}\left[\pi_{h}+\alpha R+\omega_{1} Q_{c}+\omega_{2} Q_{m}-\left(\lambda_{1}+\lambda_{2}+\mu_{h}\right) S\right] \\
& S^{\beta} \mathcal{L}\left(E_{c}\right)-S^{\beta-1} E_{c}(0)=\mathcal{L}\left[\lambda_{1} S_{h}-\left(\phi_{1}+\theta_{1}+\mu_{h}\right) E_{c}\right] \\
& S^{\beta} \mathcal{L}\left(E_{m}\right)-S^{\beta-1} E_{m}(0)=\mathcal{L}\left[\lambda_{2} S_{h}-\left(\phi_{2}+\theta_{2}+\mu_{h}\right) E_{m}\right] \\
& S^{\beta} \mathcal{L}\left(Q_{c}\right)-S^{\beta-1} Q_{c}(0)=\mathcal{L}\left[\phi_{1} E_{c}-\left(\omega_{1}+\gamma_{4}+\delta_{1}+\mu_{h}\right) Q_{c}\right] \\
& S^{\beta} \mathcal{L}\left(Q_{m}\right)-S^{\beta-1} Q_{m}(0)=\mathcal{L}\left[\phi_{2} E_{m}-\left(\omega_{2}+\gamma_{5}+\delta_{2}+\mu_{h}\right) Q_{m}\right] \\
& S^{\beta} \mathcal{L}\left(I_{c}\right)-S^{\beta-1} I_{c}(0)=\mathcal{L}\left[\theta_{1} E_{c}-\left(\tau_{1}+\gamma_{1}+\delta_{1}+\mu_{h}\right) I_{c}\right] \\
& S^{\beta} \mathcal{L}\left(I_{m}\right)-S^{\beta-1} I_{m}(0)=\mathcal{L}\left[\theta_{2} E_{m}-\left(\tau_{2}+\gamma_{3}+\delta_{2}+\mu_{h}\right) I_{m}\right] \\
& S^{\beta} \mathcal{L}\left(I_{c m}\right)-S^{\beta-1} I_{c m}(0)=\mathcal{L}\left[\tau_{1} I_{c}+\tau_{2} I_{m}-\left(\gamma_{2}+\delta_{3}+\mu_{h}\right) I_{c m}\right] \\
& S^{B} L(T)-S^{\beta-1} T(0)=L\left[\gamma_{1} I_{c}+\gamma_{2} I_{c m}+\gamma_{3} I_{m}+\gamma_{4} Q_{c}+\gamma_{5} Q_{m}-\left(\varepsilon+\psi \delta_{4}+\mu_{h}\right) T\right] \\
& S^{B} \mathcal{L}(R)-S^{\beta-1} R(0)=\mathcal{L}\left[\varepsilon T-\left(\alpha+\mu_{h}\right) R\right] \\
& S^{B} \mathcal{L}\left(S_{r}\right)-S^{\beta-1} S_{r}(0)=\mathcal{L}\left[\pi_{r}-\left(\lambda_{3}+\mu_{r}\right) S_{r}\right] \\
& S^{B} \mathcal{L}\left(E_{r}\right)-S^{\beta-1} E_{r}(0)=\mathcal{L}\left[\lambda_{3} S_{r}-\left(\theta_{3}+\mu_{r}\right) E_{r}\right] \\
& S^{B} \mathcal{L}\left(I_{r}\right)-S^{\beta-1} I_{r}(0)=\mathcal{L}\left[\theta_{3} E_{r}-\left(\delta_{r}+\mu_{r}\right) I_{r}\right] \tag{7}
\end{align*}
$$

With initial conditions

$$
\begin{aligned}
& S_{h}(0)=n_{1}, \quad E_{c}(0)=n_{2}, E_{m}(0)=n_{3}, Q_{c}(0)=n_{4}, Q_{m}(0)=n_{5}, I_{c}(0)=n_{6}, I_{m}(0)=n_{7}, \\
& I_{c m}(0)=n_{8}, T(0)=n_{9}, R(0)=n_{10}, S_{r}(0)=n_{11}, E_{r}(0)=n_{12}, I_{r}(0)=n_{13}
\end{aligned}
$$

Dividing eqn. (7) by (S^{β}) we have:

$$
\left.\begin{array}{l}
\mathcal{L}\left(S_{h}\right)=\frac{n_{1}}{S}+\frac{1}{S^{\beta}} \mathcal{L}\left[\pi_{h}+\alpha R+\omega_{1} Q_{c}+\omega_{2} Q_{m}-\left(\lambda_{1}+\lambda_{2}+\mu_{h}\right) S\right] \\
\mathcal{L}\left(E_{c}\right)=\frac{n_{2}}{S}+\frac{1}{S^{\beta}} \mathcal{L}\left[\lambda_{1} S_{h}-\left(\phi_{1}+\theta_{1}+\mu_{h}\right) E_{c}\right] \\
\mathcal{L}\left(E_{m}\right)=\frac{n_{3}}{S}+\frac{1}{S^{\beta}} \mathcal{L}\left[\lambda_{2} S_{h}-\left(\phi_{2}+\theta_{2}+\mu_{h}\right) E_{m}\right] \\
\mathcal{L}\left(Q_{c}\right)=\frac{n_{4}}{S}+\frac{1}{S^{\beta}} \mathcal{L}\left[\phi_{1} E_{c}-\left(\omega_{1}+\gamma_{4}+\delta_{1}+\mu_{h}\right) Q_{c}\right] \\
\mathcal{L}\left(Q_{m}\right)=\frac{n_{5}}{S}+\frac{1}{S^{\beta}} \mathcal{L}\left[\phi_{2} E_{m}-\left(\omega_{2}+\gamma_{5}+\delta_{2}+\mu_{h}\right) Q_{m}\right] \\
\mathcal{L}\left(I_{c}\right)=\frac{n_{6}}{S}+\frac{1}{S^{\beta}} \mathcal{L}\left[\theta_{1} E_{c}-\left(\tau_{1}+\gamma_{1}+\delta_{1}+\mu_{h}\right) I_{c}\right] \\
\mathcal{L}\left(I_{m}\right)=\frac{n_{7}}{S}+\frac{1}{S^{\beta}} \mathcal{L}\left[\theta_{2} E_{m}-\left(\tau_{2}+\gamma_{3}+\delta_{2}+\mu_{h}\right) I_{m}\right] \\
\mathcal{L}\left(I_{c m}\right)=\frac{n_{8}}{S}+\frac{1}{S^{\beta}} \mathcal{L}\left[\tau_{1} I_{c}+\tau_{2} I_{m}-\left(\gamma_{2}+\delta_{3}+\mu_{h}\right) I_{c m}\right] \\
\mathcal{L}(T)=\frac{n_{9}}{S}+\frac{1}{S^{\beta}} \mathcal{L}\left[\gamma_{1} I_{c}+\gamma_{2} I_{c m}+\gamma_{3} I_{m}+\gamma_{4} Q_{c}+\gamma_{5} Q_{m}-\left(\varepsilon+\psi \delta_{4}+\mu_{h}\right) T\right] \\
\mathcal{L}(R)=\frac{n_{10}}{S}+\frac{1}{S^{\beta}} \mathcal{L}\left[\varepsilon T-\left(\alpha+\mu_{h}\right) R\right] \\
\mathcal{L}\left(S_{r}\right)=\frac{n_{11}}{S}+\frac{1}{S^{\beta}} \mathcal{L}\left[\pi_{r}-\left(\lambda_{3}+\mu_{r}\right) S_{r}\right] \\
\mathcal{L}\left(E_{r}\right)=\frac{n_{12}}{S}+\frac{1}{S^{\beta}} \mathcal{L}\left[\lambda_{3} S_{r}-\left(\theta_{3}+\mu_{r}\right) E_{r}\right] \\
\mathcal{L}\left(I_{r}\right)=\frac{n_{13}}{S}+\frac{1}{S^{\beta}} \mathcal{L}\left[\theta_{3} E_{r}-\left(\delta_{r}+\mu_{r}\right) I_{r}\right] \tag{8}
\end{array}\right\}
$$

Decomposing the non-linear term of equation (6) whereby we assume the solution of $S_{h}(t), E_{c}(t), E_{m}(t), Q_{c}(t), Q_{m}(t), I_{c}(t), I_{m}(t), I_{c m}(t), T(t), R(t), S_{r}(t), E_{r}(t), I_{r}(t)$ are in the form of infinite series given by:

$$
\begin{array}{ll}
S_{h}(t)=\sum_{n=0}^{\infty} S_{h}(n), & E_{c}(t)=\sum_{n=0}^{\infty} E_{c}(n), \quad E_{m}(t)=\sum_{n=0}^{\infty} E_{m}(n), \quad Q_{c}(t)=\sum_{n=0}^{\infty} Q_{c}(n), \quad Q_{m}(t)=\sum_{n=0}^{\infty} Q_{m}(n), \\
G_{Q}(t)=\sum_{n=0}^{\infty} G_{i}(n), & I_{c}(t)=\sum_{n=0}^{\infty} I_{c}(n), \quad I_{m}(t)=\sum_{n=0}^{\infty} I_{m}(n), \quad I_{c m}(t)=\sum_{n=0}^{\infty} I_{c m}(n), \quad R(t)=\sum_{n=0}^{\infty} R(n), \\
S_{r}(t)=\sum_{n=0}^{\infty} S_{r}(n), & E_{r}(t)=\sum_{n=0}^{\infty} E_{r}(n), \quad I_{r}(t)=\sum_{n=0}^{\infty} I_{r}(n), \tag{9}
\end{array}
$$

We have three (5) non-linear terms. The non-linear term in equation (6) are decomposed by Adomian polynomial as follows:

$$
\begin{align*}
& I_{c}(t) S_{h}(t)=\sum_{n=0}^{\infty} A(n), \quad I_{c m}(t) S_{h}(t)=\sum_{n=0}^{\infty} B(n), \quad I_{r}(t) S_{h}(t)=\sum_{n=0}^{\infty} C(n), \\
& I_{m}(t) S_{h}(t)=\sum_{n=0}^{\infty} D(n), I_{r}(t) S_{r}(t)=\sum_{n=0}^{\infty} E(n) \tag{10}
\end{align*}
$$

Where $A(n), B(n), C(n), D(n), E(n)$ are Adomian polynomials given by

$$
\begin{align*}
& A(n)=\frac{1}{\Gamma(n+1)} \frac{d^{n}}{d \lambda^{n}}\left[\sum_{k=0}^{n} \lambda^{k} I_{c}(k) \sum_{k=0}^{n} \lambda^{k} S_{h}(k)\right]_{\lambda=0} \\
& B(n)=\frac{1}{\Gamma(n+1)} \frac{d^{n}}{d \lambda^{n}}\left[\sum_{k=0}^{n} \lambda^{k} I_{c m}(k) \sum_{k=0}^{n} \lambda^{k} S_{h}(k)\right]_{\lambda=0} \tag{11}\\
& C(n)=\frac{1}{\Gamma(n+1)} \frac{d^{n}}{d \lambda^{n}}\left[\sum_{k=0}^{n} \lambda^{k} I_{r}(k) \sum_{k=0}^{n} \lambda^{k} S_{h}(k)\right]_{\lambda=0} \\
& D(n)=\frac{1}{\Gamma(n+1)} \frac{d^{n}}{d \lambda^{n}}\left[\sum_{k=0}^{n} \lambda^{k} I_{m}(k) \sum_{k=0}^{n} \lambda^{k} S_{h}(k)\right]_{\lambda=0} \\
& E(n)=\frac{1}{\Gamma(n+1)} \frac{d^{n}}{d \lambda^{n}}\left[\sum_{k=0}^{n} \lambda^{k} I_{r}(k) \sum_{k=0}^{n} \lambda^{k} S_{r}(k)\right]_{\lambda=0}
\end{align*}
$$

The polynomials are given by

$$
\begin{align*}
& A(0)=I_{c}(0) S_{h}(0), \\
& A(1)=I_{c}(0) S_{h}(1)+I_{c}(1) S_{h}(0), \\
& A(2)=I_{c}(0) S_{h}(2)+I_{c}(1) S_{h}(1)+I_{c}(2) S_{h}(0) \\
& B(0)=I_{c m}(0) S_{h}(0) \\
& B(1)=I_{c m}(0) S_{h}(1)+I_{c m}(1) S_{h}(0), \\
& B(2)=I_{c m}(0) S_{h}(2)+I_{c m}(1) S_{h}(1)+I_{c m}(2) S_{h}(0) . \\
& C(0)=I_{r}(0) S_{h}(0), \\
& C(1)=I_{r}(0) S_{h}(1)+I_{r}(1) S_{h}(0), \\
& C(2)=I_{r}(0) S_{h}(2)+I_{r}(1) S_{h}(1)+I_{r}(2) S_{h}(0) \\
& D(0)=I_{m}(0) S_{h}(0), \\
& D(1)=I_{m}(0) S_{h}(1)+I_{m}(1) S_{h}(0), \tag{12}\\
& D(2)=I_{m}(0) S_{h}(2)+I_{m}(1) S_{h}(1)+I_{m}(2) S_{h}(0) \\
& E(0)=I_{r}(0) S_{r}(0) \\
& E(1)=I_{r}(0) S_{r}(1)+I_{r}(1) S_{r}(0), \\
& E(2)=I_{r}(0) S_{r}(2)+I_{r}(1) S_{r}(1)+I_{r}(2) S_{r}(0)
\end{align*}
$$

Substituting equation (9), (10) into equation (8) we obtained:

$$
\begin{aligned}
& \mathcal{L}\left\{\sum_{n=0}^{\infty} E_{c}(n)\right\}=\frac{n_{2}}{S}+\frac{1}{S^{\beta}} \mathcal{L}\left[\frac{\beta_{c}\left(\sum_{n=0}^{\infty} A(n)+\sum_{n=0}^{\infty} B(n)\right)}{N_{h}}-\left(\phi_{1}+\theta_{1}+\mu_{h}\right) \sum_{n=0}^{\infty} E_{c}(n)\right] \\
& \mathcal{L}\left\{\sum_{n=0}^{\infty} E_{m}(n)\right\}=\frac{n_{3}}{S}+\frac{1}{S^{\beta}} \mathcal{L}\left[\frac{\beta_{1} \sum_{n=0}^{\infty} C(n)+\beta_{m}\left(\sum_{n=0}^{\infty} D(n)+\sum_{n=0}^{\infty} B(n)\right)}{N_{h}}-\left(\phi_{2}+\theta_{2}+\mu_{h}\right) \sum_{n=0}^{\infty} E_{m}(n)\right] \\
& \mathcal{L}\left\{\sum_{n=0}^{\infty} Q_{c}(n)\right\}=\frac{n_{4}}{S}+\frac{1}{S^{\beta}} \mathcal{L}\left[\phi_{1} \sum_{n=0}^{\infty} E_{c}(n)-\left(\omega_{1}+\gamma_{4}+\delta_{1}+\mu_{h}\right) \sum_{n=0}^{\infty} Q_{c}(n)\right] \\
& \mathcal{L}\left\{\sum_{n=0}^{\infty} Q_{m}(n)\right\}=\frac{n_{5}}{S}+\frac{1}{S^{\beta}} \mathcal{L}\left[\phi_{2} \sum_{n=0}^{\infty} E_{m}(n)-\left(\omega_{2}+\gamma_{5}+\delta_{2}+\mu_{n}\right) \sum_{n=0}^{\infty} Q_{m}(n)\right] \\
& \mathcal{L}\left\{\sum_{n=0}^{\infty} I_{c}(n)\right\}=\frac{n_{6}}{S}+\frac{1}{S^{\beta}} \mathcal{L}\left[\theta_{1} \sum_{n=0}^{\infty} E_{c}(n)-\left(\tau_{1}+\gamma_{1}+\delta_{1}+\mu_{h}\right) \sum_{n=0}^{\infty} I_{c}(n)\right] \\
& \mathcal{L}\left\{\sum_{n=0}^{\infty} I_{m}(n)\right\}=\frac{n_{7}}{S}+\frac{1}{S^{\beta}} \mathcal{L}\left[\theta_{2} \sum_{n=0}^{\infty} E_{m}(n)-\left(\tau_{2}+\gamma_{3}+\delta_{2}+\mu_{n}\right) \sum_{n=0}^{\infty} I_{m}(n)\right] \\
& \mathcal{L}\left\{\sum_{n=0}^{\infty} I_{c m}(n)\right\}=\frac{n_{8}}{S}+\frac{1}{S^{\beta}} \mathcal{L}\left[\tau_{1} \sum_{n=0}^{\infty} I_{c}(n)+\tau_{2} \sum_{n=0}^{\infty} I_{m}(n)-\left(\gamma_{2}+\delta_{3}+\mu_{n}\right) \sum_{n=0}^{\infty} I_{c m}(n)\right] \\
& \mathcal{L}\left\{\sum_{n=0}^{\infty} T(n)\right\}=\frac{n_{9}}{S}+\frac{1}{S^{\beta}} \mathcal{L}\left[\gamma_{1} \sum_{n=0}^{\infty} I_{c}(n)+\gamma_{2} \sum_{n=0}^{\infty} I_{c m}(n)+\gamma_{3} \sum_{n=0}^{\infty} I_{m}(n)+\gamma_{4} \sum_{n=0}^{\infty} Q_{c}(n)+\gamma_{5} \sum_{n=0}^{\infty} Q_{m}(n)-\left(\varepsilon+\psi \delta_{4}+\mu_{n}\right) \sum_{n=0}^{\infty} T(n)\right] \\
& \mathcal{L}\left\{\sum_{n=0}^{\infty} R(n)\right\}=\frac{n_{10}}{S}+\frac{1}{S^{\beta}} \mathcal{L}\left[\varepsilon \sum_{n=0}^{\infty} T(n)-\left(\alpha+\mu_{n}\right) \sum_{n=0}^{\infty} R(n)\right] \\
& \mathcal{L}\left\{\sum_{n=0}^{\infty} S_{r}(n)\right\}=\frac{n_{11}}{S}+\frac{1}{S^{\beta}} \mathcal{L}\left[\pi_{r}-\frac{\beta_{r} \sum_{n=0}^{\infty} E(n)}{N_{r}}-\mu_{r} \sum_{n=0}^{\infty} S_{r}(n)\right] \\
& \mathcal{L}\left\{\sum_{n=0}^{\infty} E_{r}(n)\right\}=\frac{n_{12}}{S}+\frac{1}{S^{\beta}} \mathcal{L}\left[\frac{\beta_{r} \sum_{n=0}^{\infty} E(n)}{N_{r}}-\left(\theta_{3}+\mu_{r}\right) \sum_{n=0}^{\infty} E_{r}(n)\right] \\
& \mathcal{L}\left\{\sum_{n=0}^{\infty} I_{r}(n)\right\}=\frac{n_{13}}{S}+\frac{1}{S^{\beta}} \mathcal{L}\left[\theta_{3} \sum_{n=0}^{\infty} E_{r}(n)-\left(\delta_{r}+\mu_{r}\right) \sum_{n=0}^{\infty} I_{r}(n)\right]
\end{aligned}
$$

Evaluating the Laplace transform of the $2^{\text {nd }}$ terms in the RHS of (16), we obtain

$$
\begin{aligned}
& \mathcal{L}\left\{\sum_{n=0}^{\infty} E_{c}(n)\right\}=\frac{n_{2}}{S}+\left[\frac{\beta_{c}\left(\sum_{n=0}^{\infty} A(n)+\sum_{n=0}^{\infty} B(n)\right)}{N_{h}}-\left(\phi_{1}+\theta_{1}+\mu_{h}\right) \sum_{n=0}^{\infty} E_{c}(n)\right] \frac{1}{S^{\beta+1}} \\
& \mathcal{L}\left\{\sum_{n=0}^{\infty} E_{m}(n)\right\}=\frac{n_{3}}{S}+\left[\frac{\beta_{1} \sum_{n=0}^{\infty} C(n)+\beta_{m}\left(\sum_{n=0}^{\infty} D(n)+\sum_{n=0}^{\infty} B(n)\right)}{N_{h}}-\left(\phi_{2}+\theta_{2}+\mu_{h}\right) \sum_{n=0}^{\infty} E_{m}(n)\right] \frac{1}{S^{\beta+1}} \\
& \mathcal{L}\left\{\sum_{n=0}^{\infty} Q_{c}(n)\right\}=\frac{n_{4}}{S}+\mathcal{L}\left[\phi_{1} \sum_{n=0}^{\infty} E_{c}(n)-\left(\omega_{1}+\gamma_{4}+\delta_{1}+\mu_{h}\right) \sum_{n=0}^{\infty} Q_{c}(n)\right] \frac{1}{S^{\beta+1}} \\
& \mathcal{L}\left\{\sum_{n=0}^{\infty} Q_{m}(n)\right\}=\frac{n_{5}}{S}+\mathcal{L}\left[\phi_{2} \sum_{n=0}^{\infty} E_{m}(n)-\left(\omega_{2}+\gamma_{5}+\delta_{2}+\mu_{h}\right) \sum_{n=0}^{\infty} Q_{m}(n)\right] \frac{1}{S^{\beta+1}} \\
& \mathcal{L}\left\{\sum_{n=0}^{\infty} I_{c}(n)\right\}=\frac{n_{6}}{S}+\mathcal{L}\left[\theta_{1} \sum_{n=0}^{\infty} E_{c}(n)-\left(\tau_{1}+\gamma_{1}+\delta_{1}+\mu_{h}\right) \sum_{n=0}^{\infty} I_{c}(n)\right] \frac{1}{S^{\beta+1}} \\
& \mathcal{L}\left\{\sum_{n=0}^{\infty} I_{m}(n)\right\}=\frac{n_{7}}{S}+\mathcal{L}\left[\theta_{2} \sum_{n=0}^{\infty} E_{m}(n)-\left(\tau_{2}+\gamma_{3}+\delta_{2}+\mu_{h}\right) \sum_{n=0}^{\infty} I_{m}(n)\right] \frac{1}{S^{\beta+1}} \\
& \mathcal{L}\left\{\sum_{n=0}^{\infty} I_{c m}(n)\right\}=\frac{n_{8}}{S}+\mathcal{L}\left[\tau_{1} \sum_{n=0}^{\infty} I_{c}(n)+\tau_{2} \sum_{n=0}^{\infty} I_{m}(n)-\left(\gamma_{2}+\delta_{3}+\mu_{h}\right) \sum_{n=0}^{\infty} I_{c m}(n)\right] \frac{1}{S^{\beta+1}} \\
& \left.\mathcal{L}\left\{\sum_{n=0}^{\infty} T(n)\right\}=\frac{n_{9}}{S}+\mathcal{L}\left[\gamma_{1} \sum_{n=0}^{\infty} I_{c}(n)+\gamma_{2} \sum_{n=0}^{\infty} I_{c m}(n)+\gamma_{3} \sum_{n=0}^{\infty} I_{m}(n)+\gamma_{4} \sum_{n=0}^{\infty} Q_{c}(n)+\gamma_{5} \sum_{n=0}^{\infty} Q_{m}(n)-\left(\varepsilon+\psi \delta_{4}+\mu_{n}\right) \sum_{n=0}^{\infty} T(n)\right] \frac{1}{S^{\beta+1}}\right] \\
& \mathcal{L}\left\{\sum_{n=0}^{\infty} R(n)\right\}=\frac{n_{10}}{S}+\mathcal{L}\left[\varepsilon \sum_{n=0}^{\infty} T(n)-\left(\alpha+\mu_{h}\right) \sum_{n=0}^{\infty} R(n)\right] \frac{1}{S^{\beta+1}} \\
& \mathcal{L}\left\{\sum_{n=0}^{\infty} S_{r}(n)\right\}=\frac{n_{11}}{S}+\mathcal{L}\left[\pi_{r}-\frac{\beta_{r} \sum_{n=0}^{\infty} E(n)}{N_{r}}-\mu_{r} \sum_{n=0}^{\infty} S_{r}(n)\right] \frac{1}{S^{\beta+1}} \\
& \mathcal{L}\left\{\sum_{n=0}^{\infty} E_{r}(n)\right\}=\frac{n_{12}}{S}+\mathcal{L}\left[\frac{\beta_{r} \sum_{n=0}^{\infty} E(n)}{N_{r}}-\left(\theta_{3}+\mu_{r}\right) \sum_{n=0}^{\infty} E_{r}(n)\right] \frac{1}{S^{\beta+1}} \\
& \mathcal{L}\left\{\sum_{n=0}^{\infty} I_{r}(n)\right\}=\frac{n_{13}}{S}+\mathcal{L}\left[\theta_{3} \sum_{n=0}^{\infty} E_{r}(n)-\left(\delta_{r}+\mu_{r}\right) \sum_{n=0}^{\infty} I_{r}(n)\right] \frac{1}{S^{\beta+1}}
\end{aligned}
$$

Taking the inverse Laplace transform of both sides of (14)

$$
\begin{aligned}
& \sum_{n=0}^{\infty} E_{c}(n)=n_{2}+\left[\frac{\beta_{c}\left(\sum_{n=0}^{\infty} A(n)+\sum_{n=0}^{\infty} B(n)\right)}{N_{n}}-\left(\phi_{1}+\theta_{1}+\mu_{n}\right) \sum_{n=0}^{\infty} E_{c}(n)\right] \frac{r^{\beta}}{\tau(\beta+1)} \\
& \sum_{n=0}^{\infty} E_{m}(n)=n_{3}+\left[\frac{\beta_{1} \sum_{n=0}^{\infty} C(n)+\beta_{m}\left(\sum_{n=0}^{\infty} D(n)+\sum_{n=0}^{\infty} B(n)\right)}{N_{n}}-\left(\phi_{2}+\theta_{2}+\mu_{n}\right) \sum_{n=0}^{\infty} E_{m}(n)\right] \frac{1}{S^{\beta+1}} \\
& \sum_{n=0}^{\infty} Q_{c}(n)=n_{4}+\mathcal{L}\left[\phi_{1} \sum_{n=0}^{\infty} E_{c}(n)-\left(\omega_{1}+\gamma_{4}+\delta_{1}+\mu_{n}\right) \sum_{n=0}^{\infty} Q_{c}(n)\right] \frac{1}{S^{\beta+1}} \\
& \sum_{n=0}^{\infty} Q_{m}(n)=n_{5}+\mathcal{L}\left[\phi_{2} \sum_{n=0}^{\infty} E_{m}(n)-\left(\omega_{2}+\gamma_{5}+\delta_{2}+\mu_{n}\right) \sum_{n=0}^{\infty} Q_{m}(n)\right] \frac{1}{S^{\beta+1}} \\
& \sum_{n=0}^{\infty} I_{c}(n)=n_{6}+\mathcal{L}\left[\theta_{1} \sum_{n=0}^{\infty} E_{c}(n)-\left(\tau_{1}+\gamma_{1}+\delta_{1}+\mu_{n}\right) \sum_{n=0}^{\infty} I_{c}(n)\right] \frac{1}{S^{\beta+1}} \\
& \sum_{n=0}^{\infty} I_{m}(n)=n_{7}+\mathcal{L}\left[\theta_{2} \sum_{n=0}^{\infty} E_{m}(n)-\left(\tau_{2}+\gamma_{3}+\delta_{2}+\mu_{n}\right) \sum_{n=0}^{\infty} I_{m}(n)\right] \frac{1}{S^{\beta+1}} \\
& \sum_{n=0}^{\infty} I_{c m}(n)=n_{8}+\mathcal{L}\left[\tau_{1} \sum_{n=0}^{\infty} I_{c}(n)+\tau_{2} \sum_{n=0}^{\infty} I_{m}(n)-\left(\gamma_{2}+\delta_{3}+\mu_{n}\right) \sum_{n=0}^{\infty} I_{c m}(n)\right] \frac{1}{S^{\beta+1}} \\
& \sum_{n=0}^{\infty} T(n)=n_{9}+\mathcal{L}\left[\gamma_{1} \sum_{n=0}^{\infty} I_{c}(n)+\gamma_{2} \sum_{n=0}^{\infty} I_{c m}(n)+\gamma_{3} \sum_{n=0}^{\infty} I_{m}(n)+\gamma_{4} \sum_{n=0}^{\infty} Q_{c}(n)+\gamma_{5} \sum_{n=0}^{\infty} Q_{m}(n)-\left(\varepsilon+\psi \delta_{4}+\mu_{n}\right) \sum_{n=0}^{\infty} T(n)\right] \frac{1}{S^{\beta+1}} \\
& \sum_{n=0}^{\infty} R(n)=n_{10}+\mathcal{L}\left[\varepsilon \sum_{n=0}^{\infty} T(n)-\left(\alpha+\mu_{n}\right) \sum_{n=0}^{\infty} R(n)\right] \frac{1}{S^{\beta+1}} \\
& \sum_{n=0}^{\infty} S_{r}(n)=n_{11}+\mathcal{L}\left[\pi_{r}-\frac{\beta_{r} \sum_{n=0}^{\infty} E(n)}{N_{r}}-\mu_{r} \sum_{n=0}^{\infty} S_{r}(n)\right] \frac{1}{S^{\beta+1}} \\
& \sum_{n=0}^{\infty} E_{r}(n)=n_{12}+\mathcal{L}\left[\frac{\beta_{r} \sum_{n=0}^{\infty} E(n)}{N_{r}}-\left(\theta_{3}+\mu_{r}\right) \sum_{n=0}^{\infty} E_{r}(n)\right] \frac{1}{S^{\beta+1}} \\
& \sum_{n=0}^{\infty} I_{r}(n)=n_{13}+\mathcal{L}\left[\theta_{3} \sum_{n=0}^{\infty} E_{r}(n)-\left(\delta_{r}+\mu_{r}\right) \sum_{n=0}^{\infty} I_{r}(n)\right] \frac{1}{S^{\beta+1}}
\end{aligned}
$$

When $n=0$ we obtain,

$$
S_{h}(0)=n_{1}, \quad E_{c}(0)=n_{2}, E_{m}(0)=n_{3}, Q_{c}(0)=n_{4}, Q_{m}(0)=n_{5}, I_{c}(0)=n_{6}, I_{m}(0)=n_{7},
$$

$$
\begin{equation*}
I_{c m}(0)=n_{8}, T(0)=n_{9}, R(0)=n_{10}, S_{r}(0)=n_{11}, E_{r}(0)=n_{12}, I_{r}(0)=n_{13} \tag{16}
\end{equation*}
$$

When $n=1$, we obtain,

$$
\begin{align*}
& S_{h}(1)=\left[\pi_{h}+\alpha R(0)+o_{1} Q_{c}(0)+\omega_{2} Q_{m}(0)-\frac{\left.\left(-\frac{\beta_{c}(A(0)+B(0))}{N_{h}}+\frac{\beta_{1}(0)+\beta_{m}(D(0)+B(0))}{N_{h}}\right)-\mu_{h} S_{h}(0)\right] \frac{t^{\beta}}{\Gamma(\beta+1)}}{E_{c}(1)}=\left[\frac{\beta_{c}(A(0)+B(0))}{N_{h}}-\left(\phi_{1}+\theta_{1}+\mu_{h}\right) E_{c}(0)\right] \frac{t^{\beta}}{\Gamma(\beta+1)}\right. \\
& E_{m}(1)=\left[\frac{\beta_{1} C(0)+\beta_{m}(D(0)+B(0))}{N_{h}}-\left(\phi_{2}+\theta_{2}+\mu_{h}\right) E_{m}(0)\right] \frac{1}{S^{\beta+1}} \\
& Q_{c}(1)=\left[\phi_{1} E_{c}(0)-\left(\omega_{1}+\gamma_{4}+\delta_{1}+\mu_{h}\right) Q_{c}(0)\right] \frac{1}{S^{\beta+1}} \\
& Q_{m}(1)=\left[\phi_{2} E_{m}(0)-\left(\omega_{2}+\gamma_{5}+\delta_{2}+\mu_{h}\right) Q_{m}(0)\right] \frac{1}{S^{\beta+1}} \\
& I_{c}(1)=\left[\theta_{1} E_{c}(0)-\left(\tau_{1}+\gamma_{1}+\delta_{1}+\mu_{h}\right) I_{c}(0)\right] \frac{1}{S^{\beta+1}} \\
& I_{m}(1)=\left[\theta_{2} E_{m}(0)-\left(\tau_{2}+\gamma_{3}+\delta_{2}+\mu_{h}\right) I_{m}(0)\right] \frac{1}{S^{\beta+1}} \\
& I_{c m}(1)=\left[\tau_{1} I_{c}(0)+\tau_{2} I_{m}(0)-\left(\gamma_{2}+\delta_{3}+\mu_{h}\right) I_{c m}(0)\right] \frac{1}{S^{\beta+1}} \\
& T(1)=\left[\gamma_{1} I_{c}(0)+\gamma_{2} I_{c m}(0)+\gamma_{3} I_{m}(0)+\gamma_{4} Q_{c}(0)+\gamma_{s} Q_{m}(0)-\left(\varepsilon+\psi \delta_{4}+\mu_{h}\right) T(0)\right] \frac{1}{S^{\beta+1}} \\
& R(1)=\left[\varepsilon T(0)-\left(\alpha+\mu_{h}\right) R(0)\right] \frac{1}{S^{\beta+1}} \\
& S_{r}(1)=\left[\pi_{r}-\frac{\beta_{r} E(0)}{N_{r}}-\mu_{r} S_{r}(0)\right] \frac{1}{S^{\beta+1}} \tag{17}\\
& E_{r}(1)=\left[\frac{\beta_{r} E(0)}{N_{r}}-\left(\theta_{3}+\mu_{r}\right) E_{r}(0)\right] \frac{1}{S^{\beta+1}} \\
& I_{r}(1)=\left[\theta_{3} E_{r}(0)-\left(\delta_{r}+\mu_{r}\right) I_{r}(0)\right] \frac{1}{S^{\beta+1}}
\end{align*}
$$

When $n=2$, we obtain,
$E_{c}(2)=\left[\frac{\beta_{c}(A(1)+B(1))}{N_{h}}-\left(\phi_{1}+\theta_{1}+\mu_{h}\right) E_{c}(1)\right] \frac{\stackrel{\digamma}{ }^{\beta}}{\Gamma(\beta+1)}$
$E_{m}(2)=\left[\frac{\beta_{1} C(1)+\beta_{m}(D(1)+B(1))}{N_{h}}-\left(\phi_{2}+\theta_{2}+\mu_{h}\right) E_{m}(1)\right] \frac{1}{S^{\beta+1}}$
$Q_{c}(2)=\left[\phi_{1} E_{c}(1)-\left(\omega_{1}+\gamma_{4}+\delta_{1}+\mu_{h}\right) Q_{c}(1)\right] \frac{1}{S^{\beta+1}}$
$Q_{m}(2)=\left[\phi_{2} E_{m}(1)-\left(\omega_{2}+\gamma_{5}+\delta_{2}+\mu_{h}\right) Q_{m}(1)\right] \frac{1}{S^{\beta+1}}$
$I_{c}(2)=\left[\theta_{1} E_{c}(1)-\left(\tau_{1}+\gamma_{1}+\delta_{1}+\mu_{h}\right) I_{c}(1)\right] \frac{1}{S^{\beta+1}}$
$I_{m}(2)=\left[\theta_{2} E_{m}(1)-\left(\tau_{2}+\gamma_{3}+\delta_{2}+\mu_{h}\right) I_{m}(1)\right] \frac{1}{S^{\beta+1}}$
$I_{c m}(2)=\left[\tau_{1} I_{c}(1)+\tau_{2} I_{m}(1)-\left(\gamma_{2}+\delta_{3}+\mu_{h}\right) I_{c m}(1)\right] \frac{1}{S^{\beta+1}}$
$T(2)=\left[\gamma_{1} I_{c}(1)+\gamma_{2} I_{c m}(1)+\gamma_{3} I_{m}(1)+\gamma_{4} Q_{c}(1)+\gamma_{5} Q_{m}(1)-\left(\varepsilon+\psi \delta_{4}+\mu_{h}\right) T(1)\right] \frac{1}{S^{\beta+1}}$
$R(2)=\left[\varepsilon T(1)-\left(\alpha+\mu_{h}\right) R(1)\right] \frac{1}{S^{\beta+1}}$
$S_{r}(2)=\left[\pi_{r}-\frac{\beta_{r} E(1)}{N_{r}}-\mu_{r} S_{r}(1)\right] \frac{1}{S^{\beta+1}}$
$E_{r}(2)=\left[\frac{\beta_{r} E(1)}{N_{r}}-\left(\theta_{3}+\mu_{r}\right) E_{r}(1)\right] \frac{1}{S^{\beta+1}}$
$I_{r}(2)=\left[\theta_{3} E_{r}(1)-\left(\delta_{r}+\mu_{r}\right) I_{r}(1)\right] \frac{1}{S^{\beta+1}}$

$$
\vdots \quad=\quad \vdots
$$

When $n=n+1$, we obtain,
$\left.\begin{array}{l}S_{h}(n+1)=\left[\pi_{h}+\alpha R(n)+\sigma_{1} Q_{c}(n)+\sigma_{2} Q_{m}(n)-\left(\frac{\beta_{c}(A(n)+B(n))+}{N_{h}}+\frac{\left.\beta_{1} C(n)+\beta_{m}(D(n)+B(n))\right)}{N_{h}}\right)_{-\mu_{h} S_{h}(n)}\right] \frac{t^{\beta}}{\Gamma(\beta+1)} \\ E_{c}(n+1)=\left[\frac{\beta_{c}(A(n)+B(n))}{N_{h}}-\left(\phi_{1}+\theta_{1}+\mu_{h}\right) E_{c}(n)\right] \frac{t^{\beta}}{\Gamma(\beta+1)} \\ E_{m}(n+1)=\left[\frac{\beta_{1} C(n)+\beta_{m}(D(n)+B(n))}{N_{h}}-\left(\phi_{2}+\theta_{2}+\mu_{h}\right) E_{m}(n)\right] \frac{1}{S^{\beta+1}} \\ Q_{c}(n+1)=\left[\phi_{1} E_{c}(n)-\left(\omega_{1}+\gamma_{4}+\delta_{1}+\mu_{h}\right) Q_{c}(n)\right] \frac{1}{S^{\beta+1}} \\ Q_{m}(n+1)=\left[\phi_{2} E_{m}(n)-\left(\omega_{2}+\gamma_{5}+\delta_{2}+\mu_{h}\right) Q_{m}(n)\right] \frac{1}{S^{\beta+1}} \\ I_{c}(n+1)=\left[\theta_{1} E_{c}(n)-\left(\tau_{1}+\gamma_{1}+\delta_{1}+\mu_{h}\right) I_{c}(n)\right] \frac{1}{S^{\beta+1}} \\ I_{m}(n+1)=\left[\theta_{2} E_{m}(n)-\left(\tau_{2}+\gamma_{3}+\delta_{2}+\mu_{h}\right) I_{m}(n)\right] \frac{1}{S^{\beta+1}} \\ I_{c m}(n+1)=\left[\tau_{1} I_{c}(n)+\tau_{2} I_{m}(n)-\left(\gamma_{2}+\delta_{3}+\mu_{h}\right) I_{c m}(n)\right] \frac{1}{S^{\beta+1}} \\ T(n+1)=\left[\gamma_{1} I_{c}(n)+\gamma_{2} I_{c m}(n)+\gamma_{3} I_{m}(n)+\gamma_{4} Q_{c}(n)+\gamma_{5} Q_{m}(n)-\left(\varepsilon+\psi \delta_{4}+\mu_{h}\right) T(n)\right] \frac{1}{S^{\beta+1}} \\ R(n+1)=\left[\varepsilon T(n)-\left(\alpha+\mu_{h}\right) R(n)\right] \frac{1}{S^{\beta+1}} \\ S_{r}(n+1)=\left[\pi_{r}-\frac{\beta_{r} E(n)}{N_{r}}-\mu_{r} S_{r}(n)\right] \frac{1}{S^{\beta+1}} \\ E_{r}(n+1)=\left[\frac{\beta_{r} E(n)}{N_{r}}-\left(\theta_{3}+\mu_{r}\right) E_{r}(n)\right] \frac{1}{S^{\beta+1}} \\ I_{r}(n+1)=\left[\theta_{3} E_{r}(n)-\left(\delta_{r}+\mu_{r}\right) I_{r}(n)\right] \frac{1}{S^{\beta+1}}\end{array}\right\}$

The series solution of each compartment can be expressed as:

$$
\begin{aligned}
& S_{h}(t)=S_{h}(0)+S_{h}(1)+S_{h}(2)+\ldots \\
& E_{c}(t)=E_{c}(0)+E_{c}(1)+E_{c}(2)+\ldots
\end{aligned}
$$

$$
\begin{align*}
& E_{m}(t)=E_{m}(0)+E_{m}(1)+E_{m}(2)+\ldots \\
& Q_{c}(t)=Q_{c}(0)+Q_{c}(1)+Q_{c}(2)+\ldots \\
& Q_{m}(t)=Q_{m}(0)+Q_{m}(1)+Q_{m}(2)+\ldots \tag{20}\\
& I_{c}(t)=I_{c}(0)+I_{c}(1)+I_{c}(2)+\ldots \\
& I_{m}(t)=I_{m}(0)+I_{m}(1)+I_{m}(2)+\ldots \\
& I_{c m}(t)=I_{c m}(0)+I_{c m}(1)+I_{c m}(2)+\ldots \\
& T(t)=T(0)+T(1)+T(2)+\ldots \\
& R(t)=R(0)+R(1)+R(2)+\ldots \\
& S_{r}(t)=S_{r}(0)+S_{r}(1)+S_{r}(2)+\ldots \\
& E_{r}(t)=E_{r}(0)+E_{r}(1)+E_{r}(2)+\ldots \\
& I_{r}(t)=I_{r}(0)+I_{r}(1)+I_{r}(2)+\ldots
\end{align*}
$$

Numerical Solution of Laplace Adomian Decomposition Method (LADM)

In this section, we will see the numerical solution of the model. Using the initial conditions, the Laplace Adomian Decomposition Method (LADM) gives us an approximate solution in in terms of an infinite series presented as:

$$
\begin{align*}
& S_{h}(t)=205,125,000-630,233.89 \frac{t^{\beta}}{\Gamma(\beta+1)}-141,373.21 \frac{t^{2 \beta}}{\Gamma(2 \beta+1)}+\ldots \\
& E_{c}(t)=10,243,000-3,024,055.73 \frac{t^{\beta}}{\Gamma(\beta+1)}+912,356.18 \frac{t^{2 \beta}}{\Gamma(2 \beta+1)}+\ldots \\
& E_{m}(t)=10,243,000-2,224,088.07 \frac{{ }_{t} \beta}{\Gamma(\beta+1)}+632,059.11 \frac{t^{2 \beta}}{\Gamma(2 \beta+1)}+\ldots \\
& Q_{c}(t)=70,000+953,695.90 \frac{t^{\beta}}{\Gamma(\beta+1)}-1,264,331.90 \frac{t^{2 \beta}}{\Gamma(2 \beta+1)}+\ldots \\
& Q_{m}(t)=10,000+581,444.00 \frac{t^{\beta}}{\Gamma(\beta+1)}-326,506.31 \frac{t^{2 \beta}}{\Gamma(2 \beta+1)}+\ldots \\
& I_{c}(t)=100,000+190,8374.69 \frac{t^{\beta}}{\Gamma(\beta+1)}-1,753,921.00 \frac{t^{2 \beta}}{\Gamma(2 \beta+1)}+. . \\
& I_{m}(t)=80,000+1,587,295.00 \frac{t^{\beta}}{\Gamma(\beta+1)}-927,355.53 \frac{t^{2 \beta}}{\Gamma(2 \beta+1)}+\ldots \\
& I_{c m}(t)=10,000+36,586.04 \frac{t^{\beta}}{\Gamma(\beta+1)}+766,008.36 \frac{t^{2 \beta}}{\Gamma(2 \beta+1)}+\ldots \\
& T(t)=100,000+23,829.70 \frac{t^{\beta}}{\Gamma(\beta+1)}+494,396.16 \frac{t^{2 \beta}}{\Gamma(2 \beta+1)}+\ldots \\
& R(t)=19,000+7,690.43 \frac{t^{\beta}}{\Gamma(\beta+1)}+1,797.72 \frac{t^{2 \beta}}{\Gamma(2 \beta+1)}+\ldots \\
& S_{r}(t)=5,000-210.50 \frac{t^{\beta}}{\Gamma(\beta+1)}+69.73 \frac{t^{2 \beta}}{\Gamma(2 \beta+1)}+\ldots \\
& E_{r}(t)=2,500-4.04 \frac{{ }_{t} \beta}{\Gamma(\beta+1)}-68.78 \frac{t^{2 \beta}}{\Gamma(2 \beta+1)}+\ldots \\
& I_{r}(t)=1,000-302.25 \frac{{ }_{t} \beta}{\Gamma(\beta+1)}+151.40 \frac{t^{2 \beta}}{\Gamma(2 \beta+1)}+\ldots \tag{21}
\end{align*}
$$

For $\beta=1$, the series solution of our model becomes,

$$
\left.\begin{array}{l}
S_{h}(t)=205,125,000-630,233.89 t-70,686.61 t^{2}+\ldots \\
E_{c}(t)=10,243,000-3,024,055.73 t+456,178.09 t^{2}+\ldots \\
E_{m}(t)=10,243,000-2224088.07 t+316,029.56 t^{2}+\ldots \\
Q_{c}(t)=70,000+953695.90 t-632,165.95 t^{2}+\ldots \\
Q_{m}(t)=10,000+581444.00 t-163,253.155 t^{2}+\ldots \\
I_{c}(t)=100,000+1908374.69 t-876,960.5 t^{2}+\ldots \\
I_{m}(t)=80,000+1587295.00 t-463,677.77 t^{2}+\ldots \\
I_{c m}(t)=10,000+36586.04 t+383,004.18 t^{2}+\ldots \\
T(t)=100,000+23829.70 t+247,198.08 t^{2}+\ldots \\
R(t)=19,000+7690.43 t+898.86 t^{2}+\ldots \\
S_{r}(t)=5,000-210.50 t+30.365 t^{2}+\ldots \tag{22}\\
E_{r}(t)=2,500-4.04 t-34.39 t^{2}+\ldots \\
I_{r}(t)=1,000-302.25 t+75.7 t^{2}+\ldots
\end{array}\right\}
$$

Figure 2
From the graph in figure 2a, we observed a decrease in the population of the susceptible humans due to their overall progression into the exposed class as a result of their contact with the infected classes of humans. Figure 2b and 3a show an initial decrease in the population of the exposed
humans to COVID-19 and Monkeypox due to their progression into their respective quarantined classes. This decline is also due to high infectiousness of these diseases resulting into their progression into their respective infected classes and co-infection class.

Figure 3
The graph in figure $\mathbf{3 b}$ and $\mathbf{4 a}$ show a decrease in the population of the quarantined classes due their progression into the infected classes and their discharge into the susceptible classes of humans as a result of no manifestation of clinical symptoms of any of the disease(s).

Figure 4
Figure 4b and 5a show an initial increase in the population of the infected classes due to the influx from both the quarantined and exposed classes of these diseases. But at some point, we observed a decrease in the population of the infected classes due to their progression into the co-infection class and also their progression into the treatment classes for a better health care attention.

a. Effect of varying β on Infected Monkeypox Humans

b. Effect of varying β on COVID-19

Mpox co-infection class

Figure 5

Figure 5b shows an increase in the population of the co-infection class of COVID-19 and Monkeypox due to the influx from the two singly infected classes of COVID-19 and Monkeypox.

a. Effect of varying β on Treatment
Population

b. Effect of varying β on Recovered
Population

Figure 6

Figure 6a and $\mathbf{6 b}$ show an increase in the treatment and recovered classes due to the effective medical attention given to infected individuals which ultimately reduced the burden of COVID19 and Monkeypox in the human population.

a. Effect of varying β on susceptible Rodents population

b. Effect of varying β on Exposed Rodents Population

Figure 7

Figure 7a shows a decrease in the population of the susceptible rodents due to exposure to rodents infected with Monkeypox. From figure 7b, we observed a decrease in the population of the exposed rodents due to the high infectiousness of Monkeypox within the rodent population.

Effect of varying β on Infected Rodents

Figure 8
Figure 8 shows an increase in the population of the infected rodents with Monkeypox due to the high prevalence and burden of the disease in the rodents population.

2.6 Data Fitting for COVID-19 and Monkeypox Models

In this section, we describe the method utilized to compute information concerning vital elements in our framework (1). Utilizing the fmincon algorithm from MATLAB's optimization toolkit, we carried out data fitting for our COVID-19 and Monkeypox sub-models. COVID-19 outbreak data was obtained from Nigeria, a nation affected by the COVID-19 crisis, covering the period from July 9, 2021, to August 7, 2021. The table illustrates the documented active cases of COVID-19, while the Monkeypox outbreak data spans from October 2, 2022, to April 23, 2023.

Print ISSN: 2053-2229 (Print),
Online ISSN: 2053-2210 (Online)
Website: https://www.eajournals.org/
Publication of the European Centre for Research Training and Development -UK

DATE	Jul. 9	Jul. 10	Jul. 11	Jul.12	Jul. 13
CASES	11,713	11,515	11,421	10,357	10,363
DATE	Jul. 14	Jul. 15	Jul. 16	Jul. 17	Jul. 18
CASES	10,243	10,237	10,126	9174	9231
DATE	Jul. 19	Jul. 20	Jul. 21	Jul. 22	Jul. 23
CASES	9,170	9,202	9,139	9,227	7,700
DATE	Jul. 24	Jul. 25	Jul. 26	Jul. 27	Jul. 28
CASES	7,594	7,518	7,520	7,626	

Table 3: COVID-19 Data from Jul. 9 - Jul. 28, 2021

DATE	CASES
Oct. 2, 2022	56
Oct. 16, 2022	49
Oct. 30, 2022	31
Dec. 11, 2022	24
Dec. 18, 2022	24
Dec. 25, 2022	9
Jan. 8, 2023	7
Feb. 5, 2023	10
Feb. 19, 2023	7
Mar. 12, 2023	5
Mar. 26, 2023	7
Apr. 9, 2023	11
Apr. 16, 2023	10
Apr. 23, 2023	3

Table 4: Monkeypox data from Oct. 2, 2022 - April 23, 2023

Print ISSN: 2053-2229 (Print), Online ISSN: 2053-2210 (Online)

Website: https://www.eajournals.org/
Publication of the European Centre for Research Training and Development -UK

a. COVID-19 Data fitting

b. Monkeypox Data fitting

Figure 9

Parameters	Value	Source
π_{h}	0.029	$[13]$
π_{r}	0.2	$[14]$
β_{c}	0.0109	Fitted
β_{m}	0.1	Fitted
β_{1}	0.00025	$[15]$
β_{r}	0.3412	Fitted
ω_{1}	0.5999	Fitted
ω_{2}	0.04	$[14]$
ϕ_{1}	0.1	Fitted
ϕ_{2}	0.0571	Assumed
θ_{1}	$\frac{1}{5.2}$	$[16]$
θ_{2}	0.1578	
θ_{3}	0.0799	Fitted
γ_{1}	0.2556	Assumed

Print ISSN: 2053-2229 (Print), Online ISSN: 2053-2210 (Online)

Website: https://www.eajournals.org/
Publication of the European Centre for Research Training and Development -UK

γ_{2}	0.088366	Assumed
γ_{3}	0.01	Fitted
γ_{4}	0.25	Assumed
γ_{5}	0.2	$[17]$
τ_{1}	0.2	Assumed
τ_{2}	0.25	Assumed
ε	0.079	Assumed
α	0.008	Fitted
μ_{h}	0.00303	$[14]$
μ_{r}	0.002	$[14]$
δ_{1}	0.1557	Fitted
δ_{2}	0.1001	Fitted
δ_{3}	0.25	$[20]$
δ_{4}	0.1001	Fitted
ψ	0.4	Assumed
δ_{r}	0.5	$[18]$

Table 5: Parameters Table of Values

Convergence Analysis for the Laplace-Adomian Decomposition Method (LADM).

The solution of (1) is expressed in the forms of infinite series which converged uniformly to its exact solution. To verify the convergence of the series (21), we employ the method used in [19]. For sufficient conditions of convergence of the LADM, we present the following theorem:

Theorem 1

Let X be a Banach space and $T: X \rightarrow X$ be a constructive nonlinear operator such that for $(x),(x)^{\prime} \in X,\left\|T(x)-T\left(x^{\prime}\right)\right\|, 0<k<1$. Then, T has a unique point x such that $T x=x$, where $x=\left(S_{h}, E_{c}, E_{m}, Q_{c}, Q_{m}, I_{c}, I_{m}, I_{c m}, T, R, S_{r}, E_{r}, I_{r}\right)$. The series given() can be written by applying the Adominan decomposition method as follows:

$$
\begin{aligned}
& x_{n}=T x_{n-1}, x_{n-1} \\
& =\sum_{i=1}^{n-1} x_{i}, n=1,2,3, \ldots
\end{aligned}
$$

And we assume that $x_{0} \in B_{r}(x)$, where $B_{r}(x)=\left\{x \in X:\left\|x^{\prime}-x\right\|<r\right\}$; then, we have as follows:
(i) $\quad x_{n} \in B_{r}(x)$
(ii) $\lim _{n \rightarrow \infty} x_{n}=x$

Proof

For condition (i), invoking mathematical induction,
For $\mathrm{n}=1$, we have as follows:

$$
\left\|x_{0}-x\right\|=\left\|T\left(x_{0}\right)-T(x)\right\| \leq\left\|x_{0}-x\right\| .
$$

If this is true for $\mathrm{m}-1$, then

$$
\left\|x_{0}-x\right\| \leq k^{m-1}\left\|x_{0}-x\right\|
$$

This gives the following:

$$
\left\|x_{m}-x\right\|=\left\|T\left(x_{m-1}\right)-T(x)\right\| \leq k\left\|x_{m-1}-x\right\| \leq k^{n}\left\|x_{0}-x\right\| .
$$

Therefore,

$$
\left\|x_{m}-x\right\| \leq k^{n}\left\|x_{0}-x\right\| \leq k^{n} r<r
$$

This directly implies that $x_{n} \in B_{r}(x)$.
Also, for (ii), we have that since $\left\|x_{m}-x\right\| \leq k^{n}\left\|x_{0}-x\right\|$ and $\lim _{n \rightarrow \infty} k^{n}=0$, we can write $\lim _{n \rightarrow \infty} x_{n}=x$.

CONCLUSION

In this work, we formulated a fractional order deterministic compartmental model in a bid to study the transmission dynamics on the co-infection of COVID-19 and Monkeypox within the human population. We adopted the well-known Laplace-Adomian Decomposition method in solving and analyzing the formulated model. From our analysis using the aforementioned technique, we

Print ISSN: 2053-2229 (Print), Online ISSN: 2053-2210 (Online)

Website: https://www.eajournals.org/
Publication of the European Centre for Research Training and Development -UK
obtained series solutions of the co-infection model which were also shown to converge to an exact value. We proceed further to carry out a data fitting analysis so as to obtain the estimates for some key parameters used in the model. It was observed that increasing treatment capacities pose as a pivotal approach in reducing the disease burdens of COVID-19 and Monkeypox and the case of their co-infections within the human populace.

Data Availability

All the data used in the course of this research work has been adequately cited.

Conflicts of Interest

The authors declare that they have no conflict of interest.

REFERENCES

[1] Page J, Hinshaw D, McKay B (26 February 2021). "In Hunt for Covid-19 Origin, Patient Zero Points to Second Wuhan Market - The man with the first confirmed infection of the new coronavirus told the WHO team that his parents had shopped there". The Wall Street Journal. Retrieved 27 February 2021.
[2] "Coronavirus disease (COVID-19): How is it transmitted?". www.who.int. Retrieved 13 April 2023.
[3] Matuschek C, Moll F, Fangerau H, Fischer JC, Zänker K, van Griensven M, et al. (August 2020). "Face masks: benefits and risks during the COVID-19 crisis". European Journal of Medical Research. 25 (1): 32. doi:10.1186/s40001-020-00430-5
[4] "WHO Factsheet - Mpox (Monkeypox)". World Health Organization (WHO). 18 April 2023. Archived from the original on 21 April 2022. Retrieved 21 May 2023.
[5] "Monkeypox". GOV.UK. 24 May 2022. Archived from the original on 18 May 2022. Retrieved 28 May 2022.
[6] "Patient's Guide to Mpox Treatment with Tecovirimat (TPOXX)". Centers for Disease Control and Prevention. 28 November 2022. Archived from the original on 24 May 2023. Retrieved 24 May 2023.
[7] Fox T, Gould S, Princy N, Rowland T, Lutje V, Kuehn R (14 March 2023). Cochrane Infectious Diseases Group (ed.). "Therapeutics for treating mpox in humans". Cochrane Database of Systematic Reviews. 2023 (3): CD015769. doi:10.1002/14651858.CD015769

Website: https://www.eajournals.org/
Publication of the European Centre for Research Training and Development -UK
[8] Atokolo, William \& Aja, Remigius \& Stephen, Aniaku \& Onah, Ifeanyi \& Mbah, Godwin. (2022). Approximate Solution of the Fractional Order Sterile Insect Technology Model via the Laplace-Adomian Decomposition Method for the Spread of Zika Virus Disease. International Journal of Mathematics and Mathematical Sciences. 2022. 1-24. 10.1155/2022/2297630.
[9] Atokolo, William \& Omale, David \& Tenuche, Sezuo \& Olayemi, Kehinde Samuel \& Daniel, Alih \& Akpa, Johnson. (2020). Mathematical Model of the Transmission Dynamics of Corona Virus Disease (COVID-19) and Its Control. Asian Research Journal of Mathematics. 16. 6988. 10.9734/ARJOM/2020/v16i1130244.
[10] Snchez-Garca, J.C., Carrascosa-Moreno, N.P., Tovar-Glvez, M.I., Corts-Martn, J., LinGonzlez, A., Alvarado-Olmedo, L., Rodrguez-Blanque, R.: COVID19 in Pregnant Women, Maternal-Fetal Involvement, and Vertical Motherto-Child Transmission: A Systematic Review. Biomedicines. 10(10):2554. doi: 10.3390/biomedicines10102554. (2022)
[11] Archers Pest Contrc, "Can rats and mice spread Coronavirus". https: //archerspestcontrol.co.uk/blog/can-mice-and-rats-spread-coronavirus, Last visited 13th August, 2023.
[12] Ren, X., Zhou, J., Guo, J. et al. Reinfection in patients with COVID-19: a systematic review. glob health res policy 7, $12 \mathrm{https}: / /$ doi.org/10.1186/s41256-022-00245-3. (2022).
[13] Bhunu, C. P., Garira, W., Magombedze, G.: Mathematical analysis of a two-strain HIV/AIDS model with antiretroviral treatment. Acta Biotheoretica, 57(3), 361- 381.(2009). https://doi.org/10.1007/s10441-009-9080-2.
[14] Peter, O.J., Oguntolu, F.A., Ojo, M.M., Abdulmumin, O., Oyeniyi, A.O., Jan, R., Khan, I.: Fractional order mathematical model of monkeypox transmission dynamics. Phys. Scripta 97(8), 084005 (2022). doi: 10.1088/1402-4896/ac7ebc.
[15] Bhunu, C. P., and Mushayabasa, S.: Modelling the transmission dynamics of Poxlike infections. IAENG International Journal of Applied Mathematics 41(2), 141-149 (2011).
[16] La Salle, J., Lefschetz, S.: The stability of dynamical systems. SIAM, Philadelphia.(1976).
[17] Agbata, B.C., Shior, M.M., Olorunnishola, O.A., Ezugorie, I.G., Obeng-Denteh, W (2021). Analysis of Homotopy Perturbation Method (HPM) and its application for solving infectious disease models. IJMSS 9(4), 27-38.
[18] Peter, O. J., Kumar, S., Kumari, N., Oguntolu, F. A., Oshinubi, K., Musa, R.: Transmission dynamics of Monkeypox virus: a mathematical modelling approach. Model. Earth Syst. Environ.,no. 0123456789,(2021) doi:10.1007/s40808-021-01313-2.
[19] K. Shah, H. Khalil, and R. A. Khan, "Analytical solution of fractional order diffusion equations by natural transform method," Iranian Journal of Science and Technology, vol. 16, pp. 1-14, 2016.
[20] Agbata, B.C., Ani, B.N., Shior, M.M, Ezugorie, I.G., Paul, R.V., Meseda, P.K (2022). Analysis of Adomian Decomposition Method and its application for solving linear and nonlinear differential equations. Asian Research Journal of Mathematics. 18(2) 56-70

