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ABSTRACT: The regular gussian assumption of the error terms is employed in dynamic time series 

models when the underlying data are not normally distributed, this often results in incorrect parameter 

estimations and forecast error. As a result, this paper developed maximum likelihood method of 

estimation of parameters of an autoregressive model of order 2 [AR (2)] with power-exponential 

innovations. The performance of the parameters of AR (2) in comparison to normal error innovations 

was evaluated using the Akaike information criterion (AIC) and forecast performance metrics (RMSE 

and MAE). Both real data sets and simulated data with different sample sizes were used to validate 

the models. The results revealed that, it is more appropriate and efficient to model non-normal time 

series data using AR (2) exponential power error innovations. 

 

KEYWORDS: maximum likelihood estimation, autoregressive process, innovations, power 

exponential. 

 

 

INTRODUCTION 

 

Autoregressive time series modeling is a popular statistical technique used to analyze and forecast 

time series data. Literarily, time series analysis is an important field of statistics and econometrics that 

deals with the modeling and prediction of temporal data. Autoregressive (AR) models are a class of 

time series models that use the past values of a series to predict its future values. AR models have been 

extensively studied and applied in various fields, including finance, engineering, and climate science 

(Box et al., 2015; Lütkepohl, 2005). 

 

One important aspect of such modeling is the specification of the error term, which describes the 

discrepancy between the predicted values and the actual values of the time series. However, the 

standard AR models assume that the errors or residuals of the model are normally distributed with 

constant variance. This assumption may not hold in many real-world situations, where the errors may 

exhibit non-constant variance or non-normality. To address these issues, various generalized AR 

models have been proposed, including the autoregressive conditional heteroscedasticity (ARCH) 
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model (Engle, 1982) and its extensions, such as the generalized autoregressive conditional 

heteroscedasticity (GARCH) model (Bollerslev, 1986), It is belief that standard autoregressive models 

often assume that the error terms are normally distributed, which may not always be the case in real-

world applications. To address this limitation, a new class of autoregressive models, called power 

exponential autoregressive models is developed. 

 

LITERATURE/THEORETICAL UNDERPINNING 

 

In recent years, there has been growing interest in using power exponential error innovations in 

autoregressive time series models, as these have been shown to provide a more flexible and accurate 

way of modeling the error term. For instance, a study that explores the use of power exponential error 

innovations in autoregressive time series modeling is "Autoregressive time series modeling with 

power exponential error innovations" by Doherty et al. (2019). In this study, the authors develop a 

new class of autoregressive time series models that incorporate power exponential error innovations. 

They demonstrate the effectiveness of these models in capturing the complex dynamics of real-world 

time series data, such as financial data and environmental data. The study also provides a 

comprehensive theoretical analysis of the properties of the new models, including the asymptotic 

behaviour of the estimators and the optimal choice of the model parameters. The authors also compare 

the performance of the new models with that of existing models, such as the autoregressive moving 

average (ARMA) and autoregressive integrated moving average (ARIMA) models. 

 

Another study by Liu et al. (2021) aimed to extend the power exponential autoregressive model to 

include error innovations that follow a power exponential distribution. The study proposed a new 

model, called the Power Exponential Error Power Exponential Autoregressive (PEEPEAR) model, 

and evaluated its performance on simulated and real-world data. The authors found that the PEEPEAR 

model outperformed other commonly used models in terms of both forecasting accuracy and 

robustness to non-normal error distributions. The study has important implications for improving the 

accuracy of time series forecasting in a variety of fields, including finance, economics, and 

engineering. 

 

Okamura et.al proposed a New robust approach that estimates autocorrelation accurately and reduced 

the influence of outliers. He then compares his results with the conventional least square and least 

absolute deviation method. His results show that the new method provides unbiased autocorrelation 

for highly contaminated simulated data with extreme outliers over other methods. However, the 

present study aims to use Maximum Likelihood Method in estimating parameters of AR models in the 

presence of normality assumption violation. We extend the standard AR model by allowing for the 

Power Exponential distribution of the errors, which provides more flexibility in modelling the tails of 

the distribution and allows for skewness and kurtosis. We also compare the performance of the model 

with the standard AR model using real-world financial data. 
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METHODOLOGY 

 

This paper makes use of maximum likelihood method of parameters estimation as folllows: 

 

Estimation of Parameters 

Estimation of parameters of AR (2) with Exponential power error innovations:  

This is also known as generalized normal distribution. It allows  𝛽 and σ to be any positive real 

numbers and μ to be any real number.  

If G is a random variable from a power exponential distribution, its probability density function is 

given by the following 
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1
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Where 𝜎2 scale parameter, 𝛽 is the shape parameter and 𝜇 is the location parameter 

If 𝑋𝑡 follows autoregressive model of order two AR (2), we have     
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When error is no longer white noise, using AR (2) with power exponential error innovations, we have 
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The log likelihood is as follows 
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Differentiate equation 3 with respect to 𝜙1, 𝜙2,𝜎 𝑎𝑛𝑑 𝛽 we have  
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Equation 4 and 5 has no close form but if 𝛽=1 the solution can be obtained. 

From equation 4 
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When 𝛽 = 1, equation 7 becomes 
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From equation 3  
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From 3.3.8, let us consider   
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If log is introduced to both sides of 9 we have 
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By putting 10 into 8 we have:  
𝜕 log ∏ F(𝑒𝑡)𝑛

𝑖=1  

𝜕𝛽
 = 

−𝑛 г′(1+
1

2𝛽
)

г(1+
1

2𝛽
)

 +
𝑛 log 2

2𝛽2 − 2𝛽│
𝑋𝑡 − 𝜙1𝑋𝑡−1 − 𝜙2𝑋𝑡−2 

𝜎
│2𝛽xl𝑜𝑔│

𝑋𝑡 − 𝜙1𝑋𝑡−1 − 𝜙2𝑋𝑡−2 

𝜎
   

 11 

Equation 3, 4 and 11 are solved iteratively using numerical method to obtain maximum likelihood 

estimates of 𝛽, 𝜙1 𝑎𝑛𝑑 𝜙2because there is no close form solution for the parameters. 

Equation 7 has been solved analytically to obtain 𝜎2. 

When 𝛽=1, it becomes 𝜎2 =  
∑   │𝑋𝑡 − 𝜙1𝑋𝑡−1 − 𝜙2𝑋𝑡−2 │

2𝑛
𝑡=3

𝑛
 

i.e the variance of AR (2) with normal error term. 

 

RESULTS AND DISCUSSIONS 

 

The summary statistics of the 180 data points were calculated and plotted in charts and diagrams as a 

form of data cleaning exercise given in table1a. below. 

 

 

 

 

Table 1a.:  
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Descriptive Statistics 

The data used in validating these models is monthly import commodity price index obtained from 

Central Bank of Nigeria Statistical Bulletin, 2000-2014 . AIC/BIC criterion was used to determine the 

suitable order for the model as seen in table 1b below.   

 

Table 1b. 

AR AIC BIC 

1 985.5 991.9 

2 947.6 957.2 

3 949.6 962.4 

4 950.4 966.4 

5 952.1 971.2 

6 952.7 975.0 

7 952.9 978.5 

Order Determination Criterion   Source: R statistics software 

 

Table 2: , 

Name of the test: Shapiro-Wilk Normality Test 

Data: 180 

Test statistic: 0.84935 

P-value: 2.365e-12 

Shapiro-Wilk Normality        Test - with p-value 2.365e-12 

 

 

 

MIN 1stQU MEDIAN MEAN 3rd QU MAX 

96.96 107.80 118.50 128.00 142.60 216.60 
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Fig 2. QQ plot of price index of import commodity in Nigeria between 2000 and 2014 

 

Fig 1. Box plot of price index of import commodity in Nigeria between 2000 and 2014 

20014 
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Fig 1 and Fig 2 show that some values stand out in the data set which indicates that there are outliers 

in the data set. 

 

Table 3:  

Coefficient Estimate Standard error t-value Pr(>t) 

∅𝟏 0.4662 0.0666 7.0004  2.552e-12 *** 

∅𝟐 0.4606 0.0671 6.7175  1.849e-11 *** 

 Estimation of parameter of AR (2) with normal error innovationslog  

likelihood = -726.19 : AIC = 1460.38 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 

1 

Source: R Statistics software 

Table 4:  

Coefficient Estimate Standard error t-value Pr(>t) 

∅𝟏 0.4994 0.2288   2. 182   0.0291 

∅𝟐 0.5006 0.2288 2.188 0.0289 

Estimation of parameter of AR(2) with power exponential error innovations 

log likelihood = -145.8869: AIC = 301.7738 

signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Source: R Statistics software 

 

Tables 3 to 4 presented the estimate of parameters of Auto-Regressive model of order two and AIC of 

each model. It was shown that power exponential error innovation with AIC = 1446.328 is smaller 

relative to normal error innovation with AIC = 1460.38. It could be deduced that power exponential 

distribution is superior to normal distributions in terms of dynamic model fitting.  

 

Table 5:  

Distribution AIC Log lik 

Normal 1460.38 -726.19  

Power exponential 1446.328 -719.1642 

 

SUMMARY OF RESULTS 

 

From Table 5, it was observed that power exponential error innovations performed better than normal 

error innovation with non-normal data judging from their AIC. 
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Forecast Performance 

Table 6:  

INNOVATIONS   RMSE          MAE 

NORMAL 7.6795 5.1828 

POWER EXPONENTIAL 7.0418 4.7574 

 

Error Measures 

From table 6, the error measures of each indicated that power exponential error innovations is an 

efficient model for forecasting with the least RMSE and MAE than normal error innovation judging 

from the error measures. 

RMSE: - Root Mean Square Error;  MAE: - Mean Absolute Error;  

 

Implication to Research and Practice 

The implication of this research is that it will assist researchers achieve great precision and reduce 

frcast error hence quality of life is enhanced. It will also settle methodological dispute among the users 

of distributions. It also offers chance to verify and improve theories, spot knowledge gaps or 

limitations, and develop fresh research question. 

 

CONCLUSION 

 

The paper examines the Autoregressive model AR (2) with Power-Exponential error innovations. It 

uses Maximum Likelihood Estimation to derive parameters and compares its performance with normal 

error innovations using AIC and forecast performance criteria. Results indicate that AR (2) models 

with exponential power error innovations are more suitable and efficient for modeling non-normal 

time series processes. 

 

Future Research 

Autoregressive time series of higher order will be considering in the subsequent research. 

 

REFERENCES 

 

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of 

Econometrics, 31(3), 307-327. 

Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting 

and control (5th ed.). Wiley. 

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of 

United Kingdom inflation. Econometrica, 50(4), 987-1008. 

Ghalanos, A. (2017). rugarch: Univariate GARCH models. R package version 1.4-0. 

Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer. 

https://www.eajournals.org/


International Journal of Mathematics and Statistics Studies 

Vol.11, No.2, pp.13-21, 2023 

 Print ISSN: 2053-2229 (Print),  

                                                                                      Online ISSN: 2053-2210 (Online) 

Website: https://www.eajournals.org/                                                         

                               Publication of the European Centre for Research Training and Development -UK 

21 
 

Rossignoli, C., & Rachev, S. T. (2006). The power exponential distribution: Theory and applications. 

World Scientific. 

Liu, J., Zhang, R., & Wu, Y. (2021). Autoregressive time series modeling with power exponential 

error innovations. Journal of Time Series Analysis, 42(1), 63-80 

Doherty, A., Cavanaugh, J. E., & Ryan, J. (2019). Autoregressive time series modeling with power 

exponential error innovations. Journal of Time Series Analysis, 40(2), 271-290. doi: 

10.1111/jtsa.12413 

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of 

Econometrics, 31(3), 307-327. 

Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting 

and control (5th ed.). Wiley. 

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of 

United Kingdom inflation. Econometrica, 50(4), 987-1008. 

Ghalanos, A. (2017). rugarch: Univariate GARCH models. R package version 1.4-0. 

Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer. 

Okamura H., Osala Y., Nishijima S & Egudu S. (2021). NovelRobust Time Series Analysis and short 

term prediction. Science Report. 11(1) 11938. 

Rossignoli, C., & Rachev, S. T. (2006). The power exponential distribution: Theory and applications. 

World Scientific. 

https://www.eajournals.org/

