Education, Learning, Training & Development 3(2),102-116, 2022

Print ISSN: 2517-276X

Online ISSN: 2517-2778

Website: <a href="https://bjmas.org/index.php/bjmas/index">https://bjmas.org/index.php/bjmas/index</a>

Published by European Centre for Research Training and Development UK

Utilization of Information and Communication Technologies (ICTs) Among Basic Rural Secondary School Teachers in Katsina State, Nigeria

\*Ikwuakam O.T., Abubakar, A.A., Agwam..Y, Iyela A., Ibrahim M., Lawal M. Federal College of Education, Katsina, Nigeria

DOI: <u>https://doi.org/10.37745/bjmas.2022.0079</u>

Published: 28th November, 2022

**ABSTRACT:** The study was conducted in Katsina State with the aim of finding out the extent of utilization of information and communication technologies (ICTs) among basic rural secondary school teachers. Multi-stage sampling procedure was used to sample 260 teachers; structured interview schedule was employed to capture their thoughts on socio-economic characteristics, sources of information, awareness, access, ICTs utilization and constraints. Descriptive (frequency counts, percentages, mean and standard deviation) and inferential statistics (Chi square and Pearson Product Moment Correlation PPMC) were instruments of data analysis. Teachers were mostly males (85.8%), NCE/BED (97.7%) holders with mean age of 34 years and 9 years of working experience. Television ( $\overline{x} = 2.35$ ) and internet ( $\overline{x} = 2.31$ ) were major sources of information with 60.85% having high level of ICTs awareness. Mobile phone ( $\overline{x} = 2.08$ ) and internet ( $\overline{x} = 1.76$ ) were most accessed ICTs with 53.8% having low level of access to ICTs. Mobile phone ( $\overline{x} = 1.71$ ), newspaper ( $\overline{x} = 1.52$ ) and radio ( $\overline{x} = 1.50$ ) as ICTs were mostly utilized. Most (52.3%) teachers had low level of ICTs utilization. Benefits derived were mostly motivation of students ( $\overline{x} = 2.45$ ) and facilitating knowledge sharing with colleagues ( $\overline{x} = 2.42$ ). Levels of benefits derived (60.4%) and constraints were high and low respectively. Information (r = 0.330), awareness (r = 0.357), benefits (r = 0.162), access (r = 0.770) significantly correlated with respondents' level of ICTs utilization. Level (52.3%) of ICTs utilization was low notwithstanding that mobile phone; internet, newspaper and radio were mostly utilized.

**KEYWORDS:** information, communication technologies, awareness, access, utilization, benefits

# INTRODUCTION

The potentials of Information and Communication Technology (ICT) in making education in developing countries effective appear unassailable. ICTs involve all technologies that facilitate communication, the processing and transmission of information by electronic means (CTA 2003). This interpretation accommodates the full range of ICT, from radio and television to telephones (fixed and mobile), computers and internet.

From the definitions also, most electronic based communication systems conveniently fit into the description of ICT with a good number of them combining well to form network that reaches

Education, Learning, Training & Development 3(2),102-116, 2022

Print ISSN: 2517-276X

## Online ISSN: 2517-2778

Website: <a href="https://bjmas.org/index.php/bjmas/index">https://bjmas.org/index.php/bjmas/index</a>

## Published by European Centre for Research Training and Development UK

virtually every nooks and crannies of the world (UNDP 2001). Thus; their availability and utilization are seemingly assuming a common trend in most societies and educational system in particular. Such upsurge in usage has in recent times also been observed to be spreading gradually into almost all areas of rural life despite the lingering constraints of access, connectivity, literacy, content and cost (CTA 2003). Brakel & Chisenga, (2003) Nwagwu & Ahanihe (2006) have also noted the rapid evolving rate of ICT since mid-20th century, its convergence and pervasiveness. This was confirmed by (UNDP 2006, Yusuf 2005) who attributed the spread to ICTs roles in promoting participating in global markets, political accountability; delivery of basic services; and enhancing of teaching, learning, and research as well as development opportunities in rural areas. In programmed instruction, ICTs also plays formidable roles. Programmed instruction refers to a self-instructional technique that presents experience sequentially and logically such that a learner interacts with them in a predetermined order (Olibie 2008). Akinyemi (1998) in corroboration observed that with programmed lessons in the ICT, slow learners are availed the privilege to severally go through a lesson with remarkable understanding. Olakulehin (2007) also revealed that teaching pedagogy through the application of ICT has the advantage of heightening the motivation; helping recall previous learning; providing new instructional stimuli; activating the learner's response; providing systematic and steady feedback; facilitating appropriate practice; sequencing learning appropriately; and providing a viable source of information for enhanced learning. Thus teachers who use this system of instructional strategy would be able to kindle in the hearts of the learners a desirable attitude towards ICT tools in their entire way of life.

The robust role in our fast changing world implies that everyone not just teachers and students are in need of ICTs and utilization. Perhaps, the realization of this role could be the major factor that necessitated organizations, Local, States and Federal Governments to train and establish ICTs facilities and re-train their employees (Adomi & Anie, 2006). For instance, African Ministries of Education including Nigeria took a more proactive step in coordinating and leading the development of ICT infrastructure in school systems. In June 2003, at the African Summit of the World Economic Forum held in Durban, South Africa, the New Partnership for African Development (NEPAD) launched the e-Schools Initiative, intended to equip all African high schools with ICT equipment including computers, radio and television sets, phones and fax machines, communication equipment, scanners, digital cameras, and copiers, among other things (Esharennana & Kpangban 2010). The Federal Ministry of Education also launched an ICT-driven project know as School Net (www.snng.org) (FGN 2006; Adomi 2005; Okebukola, 2004), which was intended to equip all schools in Nigeria with computers and communications technologies. Unfortunately, despite these efforts, most secondary schools in Nigeria (public and private) do not have robust ICT training programmes (Goshit 2006). This is one of the reasons why Nigeria ranked 90<sup>th</sup> in terms of degree of ICTs preparedness and utilization out of a total of 115 surveyed countries (Global Information Technology 2005). United States of America topped the list, followed by Singapore, Denmark, Iceland, Finland, Canada, Taiwan, Sweden, Switzerland and the United Kingdom. The low rate has also been attributed to inadequate ICT skilled manpower in schools,

Education, Learning, Training & Development 3(2),102-116, 2022

Print ISSN: 2517-276X

Online ISSN: 2517-2778

Website: <a href="https://bjmas.org/index.php/bjmas/index">https://bjmas.org/index.php/bjmas/index</a>

Published by European Centre for Research Training and Development UK

school administrators/teachers' poor perception, inadequate facilities, frequent electricity interruption and poor maintenance culture (Esharennana and Kpangban 2010).

However, because the low rate of ICTs utilization in Nigeria as x-rayed above is a generalized one; it may not be good enough using it to adjudge individual states of the federation. Consequently, the situation as it is in Katsina State requires investigation. It is against this background that the study tries to examine the utilization of ICTs among rural basic secondary school teachers in the state.

# **Specific objectives**

The specific objectives included:

- 1. Identify teachers' level of awareness on ICT in the area
- 2. Ascertain teachers' source of information on ICT in the area
- 3. Find out teachers' level of access to ICT in the area
- 4. Examine teachers' level of utilization of ICT in the area
- 5. Identify respondents' constraints to ICT utilization in the area

# METHODOLOGY

The study was conducted in Katsina state located in the North west geo-political zone of Nigeria. The population of the study consisted of all rural basic secondary school teachers in the State. Multistage sampling procedure was used in selecting the respondents. A total 16 LGAs of the 34 LGAs of the state were purposively selected. Of this 16 LGAs, 12 LGAs (75%) were selected using simple random sampling technique. Three rural schools from each of the twelve sampled LGAs were also randomly selected to give 36 schools. Using systematic random sampling technique, 8 teachers were selected from the list of teachers in each of the 36 sampled schools, resulting in a sample of 288. Although, 260 copies of the instrument were returned, filled correctly and used for the study.

A structured questionnaire containing questions on respondents' socio-economic characteristics, sources of information, awareness, access, utilization of ICT and constraints was used to collect data. Sources of information was measured on a 4 – point scale of always (3), occasionally (2) rarely (1), Never (0) while constraints to ICTs utilization was also measured on 4 – point scale of very severe (3), severe (2), not severe (1) not a constraint (0). Each respondent's score was generated based on constraints faced and the level of severity of such constraints. Respondents' awareness was measured using a list of awareness statements which they responded freely. Respondents with right responses were awarded 1 and wrong 0. A total score was obtained and respondents who scored below the mean value were adjudged to have low awareness, while those whose awareness score equals or greater that the mean score were adjudged to have high level of awareness. Access to ICT was measured on a 4-point scale of always, occasionally, rarely, and

Education, Learning, Training & Development 3(2),102-116, 2022

Print ISSN: 2517-276X

Online ISSN: 2517-2778

Website: https://bjmas.org/index.php/bjmas/index

Published by European Centre for Research Training and Development UK

never with scores of 3, 2, 1, and 0 assigned respectively. Level of utilization was measured on 4point scale of always (3), occasionally (2), rarely (1) and never (0). The mean score was determined and used to categorize the respondents into high (scores of mean and above mean) and low (for scores below mean) in terms of utilization of ICT. Descriptive statistics such as frequency counts, percentages, and means was used to describe the data while Chi square and PPMC were used to determine the relationship between the independent variables and dependent variable.

# **RESULTS AND DISCUSSION**

# Personal characteristics of the respondents

Table 1 shows that majority (45.8%) of the respondents fall within less or equal 30 years with the mean age of 34 years. Also shown in Table 1 is that 39.2% of the teachers have a mean age of 9 years teaching experience. Table 1 further revealed that 85.8% of the teachers were males as against 14.2% female. Majority (97.7%) possessed NCE/B.ED certificate.

| Personal characteristics   | F   | %    | Mean                  |
|----------------------------|-----|------|-----------------------|
| Age:                       |     |      | $34.3580 \pm 9.11752$ |
| less or equal 30           | 122 | 46.9 |                       |
| 31-40                      | 77  | 29.6 |                       |
| 41-50                      | 43  | 16.5 |                       |
| above 50                   | 18  | 6.9  |                       |
| Years of experience:       |     |      | $8.9923 \pm 7.45229$  |
| 1-5                        | 102 | 39.2 |                       |
| 6-10                       | 75  | 28.8 |                       |
| 11-15                      | 35  | 13.5 |                       |
| 16-20                      | 23  | 8.8  |                       |
| above 20                   | 25  | 9.6  |                       |
| Gender:                    |     |      |                       |
| Male                       | 223 | 85.8 |                       |
| Female                     | 37  | 14.2 |                       |
| Educational qualification: |     |      |                       |
| OND/HND                    | 1   | .4   |                       |
| NCE/BED                    | 254 | 97.7 |                       |
| M.Sc/PhD                   | 5   | 1.9  |                       |

Table 1: distribution of respondents' based on personal characteristics

Source: Field Survey,

# **Awareness of ICTs**

The result in Table 2 shows that most teachers were aware that newspaper (93.8%) radio (93.5%), mobile phone (93.1%), television (92.7%), computer (90.8%), internet (88.5%) Video/audio CD/CD/cassette (87.7%) and e-mail (87.3%) were ICT devices. Other ICTs the respondents were aware of included journals (85.0%), posters (80.8%), digital camera (77.3%), newsletter (70.4%), CD rom (66.2%), data projector (63.5%), bulletin (70.4%) and electronic books (55.8%). Table 2b is a summary of respondents' level of awareness on ICTs in the area. The result revealed that 60.8% of the respondents had high level of awareness on ICTs.

Education, Learning, Training & Development 3(2),102-116, 2022

Print ISSN: 2517-276X

Online ISSN: 2517-2778

Website: <a href="https://bjmas.org/index.php/bjmas/index">https://bjmas.org/index.php/bjmas/index</a>

|--|

|    | ICTs                         | Awar | e    | Not av | vare |
|----|------------------------------|------|------|--------|------|
|    |                              | F    | %    | F      | %    |
| 1  | CD ROM                       | 172  | 66.2 | 88     | 33.8 |
| 2  | E-mail                       | 227  | 87.3 | 33     | 12.7 |
| 3  | Internet                     | 230  | 88.5 | 30     | 11.5 |
| 4  | Electronic billboard adverts | 144  | 55.4 | 116    | 44.6 |
| 5  | Electronic books             | 145  | 55.8 | 115    | 44.2 |
| 6  | Computers                    | 236  | 90.8 | 24     | 9.2  |
| 7  | Video/audio CD/CD/cassette   | 228  | 87.7 | 32     | 12.3 |
| 8  | Mobile phone                 | 242  | 93.1 | 18     | 6.9  |
| 9  | CCTV                         | 133  | 51.2 | 127    | 48.8 |
| 10 | Digital camera               | 201  | 77.3 | 59     | 22.7 |
| 11 | Data projector               | 165  | 63.5 | 95     | 36.5 |
| 12 | Fax                          | 118  | 45.4 | 142    | 54.6 |
| 13 | Television                   | 241  | 92.7 | 19     | 7.3  |
| 14 | Radio                        | 243  | 93.5 | 17     | 6.5  |
| 15 | Newspaper                    | 244  | 93.8 | 16     | 6.2  |
| 16 | Journals                     | 221  | 85.0 | 39     | 15.0 |
| 17 | Posters                      | 210  | 80.8 | 50     | 19.2 |
| 18 | Bulletin                     | 159  | 61.2 | 101    | 38.8 |
| 19 | Newsletters                  | 183  | 70.4 | 77     | 29.6 |
| 20 | GIS                          | 77   | 29.6 | 183    | 70.4 |

## Table 2b: Respondents' level of awareness of ICTs

| Level of utilization | F   | %    | Minimum | Maximum | Mean    | Standard  |
|----------------------|-----|------|---------|---------|---------|-----------|
|                      |     |      | score   | score   | score   | deviation |
| Low (< mean)         | 102 | 39.2 | .00     | 20.00   | 14.6885 | 4.67548   |
| High ( $\geq$ mean)  | 158 | 60.8 |         |         |         |           |
| Total                | 260 | 100  |         |         |         |           |

### **Source of information**

The result in Table 3 shows that internet (58.5%), radio (58.5%) television (58.5%), friends (46.2%), newspaper (43.5%) and educational institutions (36.9%) always provided information to most respondents. On the overall television (mean = 2.35), internet (mean = 2.31), friends (mean = 2.30) and colleagues (mean =2.14) ranked 1<sup>st</sup>, 2<sup>nd</sup>, 3<sup>rd</sup> and 4<sup>th</sup> respectively as respondents' sources of awareness on ICT in the area.

Education, Learning, Training & Development 3(2),102-116, 2022

Print ISSN: 2517-276X

Online ISSN: 2517-2778

Website: https://bjmas.org/index.php/bjmas/index

| Published by European Centre for Research Training and Development UI |
|-----------------------------------------------------------------------|
|-----------------------------------------------------------------------|

| Table 3: distribution of respondents based on source of information |      |      |              |      |        |      |       |      |      |                 |  |
|---------------------------------------------------------------------|------|------|--------------|------|--------|------|-------|------|------|-----------------|--|
| Sources of information                                              | Alwa | ays  | Occasionally |      | Rarely |      | Never |      | Mean | Rank            |  |
|                                                                     | F    | %    | F            | %    | F      | %    | F     | %    |      |                 |  |
| Friends                                                             | 120  | 46.2 | 111          | 42.7 | 17     | 6.5  | 12    | 4.6  | 2.30 | 3 <sup>rd</sup> |  |
| Colleagues                                                          | 111  | 42.7 | 98           | 37.7 | 27     | 10.4 | 24    | 9.2  | 2.14 | $4^{\text{th}}$ |  |
| Internet                                                            | 152  | 58.5 | 60           | 23.1 | 24     | 9.2  | 24    | 9.2  | 2.31 | $2^{nd}$        |  |
| Newspaper                                                           | 114  | 43.8 | 82           | 31.5 | 41     | 15.8 | 23    | 8.8  | 2.10 | 5 <sup>th</sup> |  |
| Computer training institution                                       | 51   | 19.6 | 83           | 31.9 | 46     | 17.7 | 80    | 30.8 | 1.40 | 8 <sup>th</sup> |  |
| Educational institutions                                            | 96   | 36.9 | 83           | 31.9 | 35     | 13.5 | 46    | 17.7 | 1.88 | 6 <sup>th</sup> |  |
| Television                                                          | 152  | 58.5 | 66           | 25.4 | 23     | 8.8  | 19    | 7.3  | 2.35 | $1^{st}$        |  |
| Radio                                                               | 62   | 23.8 | 81           | 31.2 | 47     | 18.1 | 70    | 26.9 | 1.52 | $7^{\text{th}}$ |  |
| Workshop/seminars                                                   | 32   | 12.3 | 87           | 33.5 | 53     | 20.4 | 88    | 33.8 | 1.24 | 9 <sup>th</sup> |  |

## Access to ICTs

The finding on respondents' access to ICTs as shown in Table 4a revealed that respondents had access to different ICTs at different scales. The result shows that most respondents weekly accessed mobile phone (61.0%), radio (47.7%), internet (40.8%), television (40.0%), and video/audio CD/CD/cassette (38.8%). Other ICTs respondents accessed weekly were newspaper (35.8%) and computer (34.2%). Also revealed in Table 4 is that majority (76.25%, 74.6%, 56.9%, 55.8%, and 55.4%) of the respondents never accessed GIS, fax, electronic books, data projector and electronic billboard adverts. Other ICTs most respondents never accessed were bulletin (53.8%), newsletter (51.2%) and digital camera (49.2%). The result further indicated that mobile phone (mean = 2.08) and internet (mean = 1.76) ranked 1<sup>st</sup> and 2<sup>nd</sup> respectively as major ICTs the teachers accessed. These were followed by newspaper (mean = 1.67) and computer (mean = 1.65) that ranked 3<sup>rd</sup> and 4<sup>th</sup> respectively. Table 4b further gives the summary of respondents' access to ICTs. The result revealed that majority (53.8%) of the teachers had low access to ICTs in the area.

Education, Learning, Training & Development 3(2),102-116, 2022

Print ISSN: 2517-276X

Online ISSN: 2517-2778

Website: https://bjmas.org/index.php/bjmas/index

Published by European Centre for Research Training and Development UK

| Table 4a: distribution of respondents based on access to ICTs |      |      |     |      |      |      |      |      |      |                  |
|---------------------------------------------------------------|------|------|-----|------|------|------|------|------|------|------------------|
| ICTs                                                          | Week | ly   | Mon | thly | Anyt | ime  | Neve | r    | Mean | Rank             |
|                                                               | F    | %    | F   | %    | F    | %    | F    | %    |      |                  |
| CD ROM                                                        | 43   | 16.5 | 60  | 23.1 | 34   | 13.1 | 123  | 47.3 | 1.09 | 9 <sup>th</sup>  |
| E-mail                                                        | 83   | 31.9 | 63  | 24.2 | 27   | 10.4 | 87   | 33.5 | 1.55 | 6 <sup>th</sup>  |
| Internet                                                      | 106  | 40.8 | 59  | 22.7 | 20   | 7.7  | 75   | 28.8 | 1.76 | $2^{nd}$         |
| Electronic billboard adverts                                  | 27   | 10.4 | 49  | 18.8 | 40   | 15.4 | 144  | 55.4 | .84  | $14^{\text{th}}$ |
| Electronic books                                              | 41   | 15.8 | 45  | 17.3 | 26   | 10.0 | 148  | 56.9 | .92  | $11^{\rm th}$    |
| Computers                                                     | 89   | 34.2 | 71  | 27.3 | 20   | 7.7  | 80   | 30.8 | 1.65 | $4^{\text{th}}$  |
| Video/audio CD/CD/cassette                                    | 101  | 38.8 | 49  | 18.8 | 24   | 9.2  | 86   | 33.1 | 1.64 | $5^{th}$         |
| Mobile phone                                                  | 160  | 61.6 | 26  | 10.0 | 7    | 2.7  | 67   | 25.8 | 2.08 | $1^{st}$         |
| CCTV                                                          | 29   | 11.2 | 47  | 18.1 | 20   | 7.7  | 164  | 63.1 | .77  | $15^{\text{th}}$ |
| Digital camera                                                | 47   | 18.1 | 54  | 20.8 | 31   | 11.9 | 128  | 49.2 | 1.08 | $10^{\text{th}}$ |
| Data projector                                                | 29   | 11.2 | 54  | 20.8 | 32   | 12.3 | 145  | 55.8 | .87  | 13 <sup>th</sup> |
| Fax                                                           | 23   | 8.8  | 17  | 6.5  | 26   | 10.0 | 194  | 74.6 | .50  | $17^{\text{th}}$ |
| Television                                                    | 104  | 40.0 | 43  | 16.5 | 15   | 5.8  | 98   | 37.7 | 1.59 | 6 <sup>th</sup>  |
| Radio                                                         | 124  | 47.7 | 34  | 13.1 | 16   | 6.2  | 86   | 33.1 | 1.76 | $2^{nd}$         |
| Newspaper                                                     | 93   | 35.8 | 62  | 23.8 | 32   | 12.3 | 73   | 28.1 | 1.67 | 3 <sup>rd</sup>  |
| Journals                                                      | 51   | 19.6 | 71  | 27.3 | 35   | 13.5 | 103  | 39.6 | 1.27 | 8 <sup>th</sup>  |
| Posters                                                       | 60   | 23.1 | 69  | 26.5 | 28   | 10.8 | 103  | 39.6 | 1.33 | $7^{\text{th}}$  |
| Bulletin                                                      | 41   | 15.8 | 53  | 20.4 | 26   | 10.0 | 140  | 53.8 | .98  | $10^{\text{th}}$ |
| Newsletters                                                   | 37   | 14.2 | 54  | 20.8 | 36   | 13.8 | 133  | 51.2 | .98  | $10^{\text{th}}$ |
| GIS                                                           | 22   | 8.5  | 26  | 10.0 | 14   | 5.4  | 198  | 76.2 | .51  | $16^{\text{th}}$ |

#### Table 4b: Respondents' level of ICTs access Minimum I aval of ICTs access 0/

| Level of ICTs access | F   | %    | Minimum | Maximum | Mean    | Standard  |
|----------------------|-----|------|---------|---------|---------|-----------|
|                      |     |      | score   | score   | score   | deviation |
| Low (< mean)         | 140 | 53.8 | .00     | 60.00   | 24.8308 | 16.97995  |
| High ( $\geq$ mean)  | 120 | 46.2 |         |         |         |           |
| Total                | 260 | 100  |         |         |         |           |

### **Utilization of ICTs**

Table 5a shows that mobile telephone (51.5%), radio (45.8%) and newspaper (42.7%) were ICTs most teachers utilized daily. On the other hand fax (80.8%), GIS (79.6%), CCTV (74.2%), electronic billboard (70.8%), data projector (63.1%) and electronic books (65.8%) were never used by majority of the respondent. In the same vein, bulletin (65.0%0, CD Rom (62.7%), newsletter (62.3%) and posters (53.5%) were never utilized by the respondents. The result further revealed that utilization of mobile phone (mean = 1.71), newspaper (mean = 1.52), radio (mean = 1.50) internet (mean = 1.44) ranked  $1^{st}$ , 2nd,  $3^{rd}$  and  $4^{th}$ respectively. However, the result in Table 5b showed that utilization of ICTs by majority (52.3%) to be low.

Education, Learning, Training & Development 3(2),102-116, 2022

Print ISSN: 2517-276X

Online ISSN: 2517-2778

Website: https://bjmas.org/index.php/bjmas/index

Published by European Centre for Research Training and Development UK

| Table 5a: distribution of respondents based on utilization of ICTs |       |      |    |        |    |               |     |       |      |                  |      |
|--------------------------------------------------------------------|-------|------|----|--------|----|---------------|-----|-------|------|------------------|------|
| ICTs                                                               | Daily |      |    | Weekly |    | eekly Monthly |     | Never |      | Mean             | Rank |
|                                                                    | F     | %    | F  | %      | F  | %             | F   | %     |      |                  |      |
| CD ROM                                                             | 34    | 13.1 | 26 | 10.0   | 37 | 14.2          | 163 | 62.7  | .74  | $14^{\text{th}}$ |      |
| E-mail                                                             | 79    | 30.4 | 21 | 8.1    | 34 | 13.1          | 126 | 48.5  | 1.20 | $7^{\text{th}}$  |      |
| Internet                                                           | 104   | 40.0 | 16 | 6.2    | 31 | 11.9          | 109 | 41.9  | 1.44 | $4^{\text{th}}$  |      |
| Electronic billboard adverts                                       | 22    | 8.5  | 24 | 9.2    | 30 | 11.5          | 184 | 70.8  | .55  | $17^{\text{th}}$ |      |
| Electronic books                                                   | 34    | 13.1 | 23 | 8.8    | 32 | 12.3          | 171 | 65.8  | .69  | $15^{th}$        |      |
| Computers                                                          | 92    | 35.4 | 21 | 8.1    | 41 | 15.8          | 106 | 40.8  | 1.38 | $5^{\text{th}}$  |      |
| Video/audio CD/CD/cassette                                         | 95    | 36.5 | 8  | 3.1    | 34 | 13.1          | 123 | 47.3  | 1.29 | 6 <sup>th</sup>  |      |
| Mobile phone                                                       | 134   | 51.5 | 3  | 1.2    | 37 | 14.2          | 86  | 33.1  | 1.71 | $1^{st}$         |      |
| CCTV                                                               | 27    | 10.4 | 13 | 5.0    | 27 | 10.4          | 193 | 74.2  | .52  | $18^{\text{th}}$ |      |
| Digital camera                                                     | 42    | 16.2 | 20 | 7.7    | 34 | 13.1          | 164 | 63.1  | .77  | $11^{\text{th}}$ |      |
| Data projector                                                     | 30    | 11.5 | 21 | 8.1    | 30 | 11.5          | 179 | 68.8  | .62  | 16 <sup>th</sup> |      |
| Fax                                                                | 18    | 6.9  | 13 | 5.0    | 19 | 7.3           | 210 | 80.8  | .38  | 19 <sup>th</sup> |      |
| Television                                                         | 106   | 40.8 | 6  | 2.3    | 29 | 11.2          | 119 | 45.8  | 1.38 | $5^{\text{th}}$  |      |
| Radio                                                              | 119   | 45.8 | 3  | 1.2    | 26 | 10.0          | 112 | 43.1  | 1.50 | 3 <sup>rd</sup>  |      |
| Newspaper                                                          | 111   | 42.7 | 16 | 6.2    | 30 | 11.5          | 103 | 39.6  | 1.52 | $2^{nd}$         |      |
| Journals                                                           | 58    | 22.3 | 29 | 11.2   | 37 | 14.2          | 136 | 52.3  | 1.04 | 8 <sup>th</sup>  |      |
| Posters                                                            | 60    | 23.1 | 17 | 6.5    | 44 | 16.9          | 139 | 53.5  | .99  | 9 <sup>th</sup>  |      |
| Bulletin                                                           | 40    | 15.4 | 19 | 7.3    | 32 | 12.3          | 169 | 65.0  | .73  | 13 <sup>th</sup> |      |
| Newsletters                                                        | 46    | 17.7 | 18 | 6.9    | 34 | 13.1          | 162 | 62.3  | .80  | $10^{\text{th}}$ |      |
| GIS                                                                | 16    | 6.2  | 10 | 3.8    | 27 | 10.4          | 207 | 79.6  | .37  | $20^{\text{th}}$ |      |

# Table 5b: Respondents' level of ICTs utilization

| Level of utilization | F   | %    | Minimum | Maximum | Mean    | Standard  |
|----------------------|-----|------|---------|---------|---------|-----------|
|                      |     |      | score   | score   | score   | deviation |
| Low (< mean)         | 136 | 52.3 | .00     | 60.00   | 19.6154 | 17.72239  |
| High ( $\geq$ mean)  | 124 | 47.7 |         |         |         |           |
| Total                | 260 | 100  |         |         |         |           |

# **Benefits derived from ICTs**

The results in Table 6a revealed that majority of the respondents adjudged most of the benefits derived from ICTs utilization high. The benefits included motivation of students to learn (63.8%), facilitating knowledge sharing with colleagues (60.0%), extends subject knowledge (57.7%), makes learning interesting, enables teachers to help learners with special needs (56.6%), improves presentation of materials (56.2%) and makes learning more diverse (52.7%). Other benefits that were adjudged high included developing range of teachers' existing pedagogic practices (52.3%) encourages learners to reinforce learnt material using individual learning style (49.6%), makes learning enjoyable and engages learners according to their potentials (45.0%) and assist in planning and presentation for efficient teaching (40.4%). Also indicated in Table 6a is the fact that motivation of students to learn (mean = 2.45), facilitating knowledge sharing with colleagues

Education, Learning, Training & Development 3(2),102-116, 2022

Print ISSN: 2517-276X

# Online ISSN: 2517-2778

Website: https://bjmas.org/index.php/bjmas/index

## Published by European Centre for Research Training and Development UK

(mean = 2.42), extends subject knowledge (mean = 2.41), makes learning enjoyable and engages learners according to their potentials (mean = 2.40) ranked  $1^{st}$ ,  $2^{nd}$ ,  $3^{rd}$  and  $4^{th}$  respectively. Summarily, Table 6b showed that majority (60.4%) of the respondents derived high level benefits notwithstanding that their low level of ICTs utilization and high constraints.

| Benefits                                                                                      | High |      | Mo | derate | Low | 7    | Mean | Rank             |
|-----------------------------------------------------------------------------------------------|------|------|----|--------|-----|------|------|------------------|
|                                                                                               | F    | %    | F  | %      | F   | %    |      |                  |
| Extends subject knowledge                                                                     | 137  | 52.7 | 84 | 32.3   | 39  | 15.0 | 2.41 | 3 <sup>rd</sup>  |
| Assist in planning and preparation for efficient teaching                                     | 105  | 40.4 | 89 | 34.2   | 66  | 25.4 | 2.36 | 7 <sup>th</sup>  |
| Develops range of teacher's existing pedagogic practices                                      | 136  | 52.3 | 82 | 31.5   | 42  | 16.1 | 2.12 | 10 <sup>th</sup> |
| Enables teachers to help learners with special needs                                          | 147  | 56.5 | 79 | 30.4   | 34  | 13.1 | 2.34 | 8 <sup>th</sup>  |
| Facilitates knowledge sharing with colleagues                                                 | 156  | 60.0 | 59 | 22.7   | 45  | 17.3 | 2.42 | $2^{nd}$         |
| Makes learning interesting, enjoyable and engages<br>learners according to their potentials   | 117  | 45.0 | 85 | 32.7   | 58  | 22.3 | 2.40 | $4^{th}$         |
| Encourages learners to reinforce learnt materials<br>using individual learning style          | 129  | 49.6 | 59 | 22.7   | 72  | 27.6 | 2.18 | 9 <sup>th</sup>  |
| Provides learners from poor digital background an opportunity of being included in ICTs world | 155  | 59.6 | 56 | 21.5   | 49  | 18.8 | 2.18 | 9 <sup>th</sup>  |
| Serves as source of reference and means of communication with peers and experts               | 155  | 59.6 | 56 | 21.5   | 49  | 18.8 | 2.37 | 6 <sup>th</sup>  |
| Makes lesson more diverse                                                                     | 137  | 52.7 | 77 | 29.6   | 46  | 17.7 | 2.32 |                  |
| Improves presentation of materials                                                            | 146  | 56.2 | 77 | 29.6   | 37  | 14.2 | 2.39 | $5^{\text{th}}$  |
| Motivates students to learn/teaching                                                          | 166  | 63.8 | 53 | 20.4   | 41  | 15.8 | 2.45 | 1 <sup>st</sup>  |

### Table 6b: Respondents' level of benefits of ICTs utilization

| Level of benefits  | F   | %    | Minimum | Maximum | Mean    | Standard  |
|--------------------|-----|------|---------|---------|---------|-----------|
|                    |     |      | score   | score   | score   | deviation |
| High (< mean)      | 157 | 60.4 | .00     | 36.00   | 27.9346 | 7.75540   |
| Low ( $\geq$ mean) | 103 | 39.6 |         |         |         |           |
| Total              | 260 | 100  |         |         |         |           |

### **Constraints to utilization of ICTs**

With respect to constraints to ICTs utilization, results in Table 7a show that lack of electricity (71.9%), inadequate computers and other hard ware (59.25%), poor leadership (57.5%) and lack of internet connectivity (53.5%) posed major constraints to most respondents. Also lack of digital skills 951.9%), inadequate training (51.9%) and vandalism and burglary (35.0%) were major constraints. The result further indicated that while majority (43.5%) adjudged insufficient time as minor constraints, technophobia (43.1%), lack of confidence 943.5%) and resistance to change (41.2%) posed no constraints to most respondents. On the other hand, lack of electricity (mean =

Education, Learning, Training & Development 3(2),102-116, 2022

Print ISSN: 2517-276X

Online ISSN: 2517-2778

Website: https://bjmas.org/index.php/bjmas/index

Published by European Centre for Research Training and Development UK

1.52), inadequate computers and other hardware (mean = 1.40), lack of internet connectivity (mean = 1.35), inadequate training (mean = 1.31) ranked  $1^{st}$ ,  $2^{nd}$ ,  $3^{rd}$  and  $4^{th}$  respectively as constraints.

On the overall, the result as presented in Table 7b indicated that majority (60.8%) of the respondent had high level of constraints to ICTs utilization in the area. The result concurs to that of Evoh (2007) who observed that despite ICTs' recognized role in improving education, it has remained a low financial priority in most educational systems in Africa. He further noted lack of resources for a sustainable integration of ICTs in education arising from budgetary constraints, management/leadership challenges, shortage of teachers with prerequisite skills, and educational resources as constraints.

| Constraints                             | Major |      | Minor |      | Not a constraint |      | Mean | Rank             |
|-----------------------------------------|-------|------|-------|------|------------------|------|------|------------------|
|                                         | F     | %    | F     | %    | F                | %    |      |                  |
| Lack of digital skills                  | 135   | 51.9 | 71    | 27.3 | 54               | 20.8 | 1.18 | $6^{th}$         |
| Poor leadership                         | 134   | 51.5 | 61    | 23.5 | 65               | 25.0 | 1.27 | $5^{th}$         |
| Technophobia                            | 67    | 25.8 | 81    | 31.2 | 112              | 43.1 | .83  | $9^{\text{th}}$  |
| Lack of internet connectivity           | 139   | 53.5 | 73    | 28.1 | 48               | 18.5 | 1.35 | 3 <sup>rd</sup>  |
| Inadequate computers and other hardware | 154   | 59.2 | 55    | 21.2 | 51               | 19.6 | 1.40 | $2^{nd}$         |
| Vandalism and burglary                  | 91    | 35.0 | 83    | 31.9 | 86               | 33.1 | 1.02 | $7^{\text{th}}$  |
| Lack of electricity                     | 187   | 71.9 | 31    | 11.9 | 42               | 16.2 | 1.56 | $1^{st}$         |
| Insufficient time                       | 67    | 25.8 | 113   | 43.5 | 80               | 30.8 | .95  | $8^{th}$         |
| Inadequate training                     | 135   | 51.9 | 71    | 27.3 | 54               | 20.8 | 1.31 | $4^{\text{th}}$  |
| Lack of confidence                      | 51    | 19.6 | 96    | 36.9 | 113              | 43.5 | .76  | $11^{\text{th}}$ |

23.5

92

35.4

Table 7a: distribution of respondents based on constraints to utilization of ICTs

61

# Table 7b: Respondents' level of constraints to utilization of ICTs

| Level of constraints | F   | %    | Minimum | Maximum | Mean    | Standard  |
|----------------------|-----|------|---------|---------|---------|-----------|
|                      |     |      | score   | score   | score   | deviation |
| High (< mean)        | 158 | 60.8 | .00     | 22.00   | 12.4500 | 5.17655   |
| Low ( $\geq$ mean)   | 102 | 39.2 |         |         |         |           |
| Total                | 260 | 100  |         |         |         |           |

# **Relationship between variables**

Resistance to change/negative attitude

The Chi square analysis results shown in Table 8 revealed that at 5 percent level of significant, there is no significant relationship between sex ( $\chi^2 = 0.232$ ), educational status ( $\chi^2 = 0.074$ ). Also the results of PPMC analysis as shown in Table 8 revealed that information (r = 0.330), awareness (r = 0.357), benefits (r = 0.162), access (r = 0.770) had significant correlation with respondents' level of ICTs utilization.

 $10^{\text{th}}$ 

.82

41.2

107

Education, Learning, Training & Development 3(2),102-116, 2022

Print ISSN: 2517-276X

Online ISSN: 2517-2778

Website: <a href="https://bjmas.org/index.php/bjmas/index">https://bjmas.org/index.php/bjmas/index</a>

Published by European Centre for Research Training and Development UK

 Table 8: Chi square and PPMC test of relationship between selected independent variables and ICTs utilization

| Variable            | $\chi^2$ - value | df    | CC       | Р     | Decision |  |
|---------------------|------------------|-------|----------|-------|----------|--|
| Sex                 | 0.232            | 1     | 0.030    | 0.630 | NS       |  |
| Educational status  | 0.074            | 2     | 0.074    | 0.491 | NS       |  |
|                     |                  |       |          |       |          |  |
| Variable            | r - value        | р     | Decision |       |          |  |
|                     |                  |       | ~        |       |          |  |
| Information         | 0.330            | 0.000 | S        |       |          |  |
| Awareness           | 0.357            | 0.000 | S        |       |          |  |
| Benefits            | 0.162            | 0.009 | S        |       |          |  |
| Constraints         | 0.014            | 0.826 | NS       |       |          |  |
| Access              | 0.770            | 0.000 | S        |       |          |  |
| Age                 | -0.056           | 0.375 | NS       |       |          |  |
| Years of experience | 0.002            | 0.973 | NS       |       |          |  |

# **DISCUSSION OF FINDINGS**

The result shows that majority the teachers were within less the mean age of 34 years. This implication is that basic rural secondary school teachers in the state are very vibrant, dynamic and can easily embrace/explore new pedagogies that can positively affect their teaching responsibility. Majority were also revealed to have an average of 9 years teaching experience. This is capable of influencing their understanding on the pros and cons of exploring ICTs as an innovation in teaching.

Greater percentage of the teachers were males, an indication of an unequal representation of both gender in teaching profession which also does not facilitate even distribution of resources, developmental success nor bridge gender gap in technical expertise and familiarity in ICTs. The result contradicts Oluwatay & Aliyu (2007) who found equal representation of both gender in ICTs usage Atisbo Local Government area.

Most of the teachers also possessed NCE/B.ED certificates. This is line with a priori expectation going by the prerequisite requirements for recruiting teachers for that level of education. This implies that the teachers can easily learn and understand how and why the use of ICTs in carry out their tasks is important. The result however, is in tandem with that of (Oluwatay & Aliyu 2007). Majority of teachers' level of ICTs awareness in the state was revealed to be high. The implication is that their information sources on ICTs were effective enough in building up such awareness status. This further connotes that ICTs' knowledge in the state is becoming widespread perhaps due teachers understanding of its significance in teaching and learning. The finding corroborates

British Journal of Multidisciplinary and Advanced Studies: Education, Learning, Training & Development 3(2),102-116, 2022 Print ISSN: 2517-276X Online ISSN: 2517-2778 Website: <u>https://bjmas.org/index.php/bjmas/index</u>

Published by European Centre for Research Training and Development UK

that of Tedla (2012) who reported that ICTs awareness is becoming ubiquitous and has the potential in promoting and transforming teaching and learning process.

The rankings of mobile phone and internet as most accessed ICTs were in line with a priori expectation. The proliferation, benefits derived, easy to operate and network availability in most rural communities could be seen as good reasons for the access status. The popularity of radio and its accessibility could also be attributed to its affordability and good network availability/signals. That access to newspaper and television ranked 3<sup>rd</sup> and 4<sup>th</sup> may be due to their costs and reliance on electricity respectively. Arokoyo (2003) has also posited that access to mobile telephone, internet and the radio is extensive compared to other ICTs for persons living in rural area.

The result that majority had low access to ICTs was unexpected in view of the ICT-Driven Project otherwise called School-Net (<u>www.snng.org</u>) which, the Federal Ministry of Education launched with the intent to equipping Nigeria schools with computers and communication technologies (FGN 2006).

However, giving that mobile phone, newspaper, radio and internet were rated most utilized ICTs, indicate that availability are becoming increasingly common among teachers in the area. Despite this, the overall utilization of ICTs among most teachers was adjudged low in the area. This can be attributed to the overall low level of ICTs access. This is tandem with Goshit (2006) who observed that although efforts were made to ensure availability, access of ICTs and usage in Nigeria's secondary schools, its level of uptake has remained abysmally low.

Interestingly, despite teachers' low level access and utilization of ICTs, they still adjudged the benefits high. This was unprecedented considering the high level of constraints majority of them experience in accessing and utilizing ICTs. Existing body of knowledge has also demonstrated array of potential benefits associated with ICTs such as to accelerate, enrich, and deepen skills, motivate and engage students, help relate school experience to work practices, create economic viability for tomorrow's workers, as well as strengthening teaching and helping schools change (Yusuf, 2005).

On the overall, despite the level of benefits derived using in teaching, majority of the teachers had series of constraints. Lack of electricity, inadequate computers and other hardware, lack of internet connectivity and inadequate training were ranked  $1^{st}$ ,  $2^{nd}$ ,  $3^{rd}$  and  $4^{th}$  respectively as constraints. On the overall however, the constraint level was adjudged high. The implication is that low utilization will continue to be the bane of the teachers in the state if right policy frame and intervention are not put in place to check mate the constraints. The result concurs with Evoh (2007) who observed that despite ICTs' recognized roles education; it has remained a low financial priority in most educational systems in Africa. He further noted lack of resources for a sustainable

British Journal of Multidisciplinary and Advanced Studies: Education, Learning, Training & Development 3(2),102-116, 2022 Print ISSN: 2517-276X Online ISSN: 2517-2778 Website: <u>https://bjmas.org/index.php/bjmas/index</u> Published by European Centre for Research Training and Development UK

integration of ICTs in education arising from budgetary and management/leadership challenges, shortage of skilled teachers, and educational resources as constraints.

The Chi square analysis results showed no significant relationship between sex, educational status and level of utilization of ICTs. This implies that sex and educational status were not functions of teachers' level of ICTs utilization in the area. On the other hand, the PPMC result revealed that information, awareness, benefits, access had significant correlation with respondents' level of ICTs utilization. The positive correlation, however, implied that as information, awareness, benefits and access increased, the more utilization of ICTs by teachers improves in the schools. In a study of ICT use among rural people in Oyo State, Nigeria, Adekoya (2006) contrarily found negatively relationship existing between these variables and the utilization of ICTs.

# CONCLUSION

It is concluded from the findings that the respondents are mainly males who are in their active work age with sound educational qualification and relatively few years of experience in teaching job. Radio, television, mobile phone and computer were major ICTs the respondents were aware. The level of awareness was high and internet, television, friends and colleagues were major channels of respondents' awareness.

Access was low even when mobile phone, internet, newspaper and computer mostly accessed. Level of utilization was low notwithstanding that mobile phone; internet, newspaper and radio were most utilized ICTs. The high level of constraint did not translate into low level of benefits respondents' derived from utilizing ICTs. The PPMC analysis result shows that information, awareness, benefits and access significantly correlated with respondents' level of ICTs utilization.

# Recommendations

Based on the findings of the study, it is recommended that:

1. Recruitment of more female gender into the teaching job is expedient for gender equity, fairness and even distribution of economic resources of the state

2. Workshop/seminar should be tactfully used as awareness creation avenues to teachers on the need for ICTs skills and utilization in teaching and learning process

3. Government and non-governmental stakeholders should as a matter of urgency intervene in making ICTs not only available, accessible but affordable to teachers

4. Training and retraining of all serving teachers in ICTs skills should be carried out on regular basis by relevant stakeholders

5. Skills in ICTs usage should be made a prerequisite requirement in recruiting personnel into teaching job

6. Areas of constraints as identified by the study should be remedied by the government for improved teaching/learning outcomes

Education, Learning, Training & Development 3(2),102-116, 2022

Print ISSN: 2517-276X

Online ISSN: 2517-2778

Website: <a href="https://bjmas.org/index.php/bjmas/index">https://bjmas.org/index.php/bjmas/index</a>

Published by European Centre for Research Training and Development UK

#### References

Adomi, E.E. (2005). Internet development and connectivity in Nigeria. Program 39 (3): 257-68.

- Adomi, E.E., & Anie, S.O. (2006). An assessment of computer literacy skills of professionals in Nigerian university libraries. *Library Hi Tech News 23* (2): 10-14.
- Akinyemi, K. (1998). Computer in Education: Fundamental of Technology Education. Ibadan: Association of Books makers Nig. Ltd.
- Arokoyo, T. (2003). ICT for Agricultural Extension Transformation. *Proceedings of the CTA's 6 th Consultative Experts Meeting of its Observatory on ICTs*, the Netherlands, September 23-25, pp. 90 – 97.
- Brakel, P.A., & Chisenga, J. (2003). Impact of ICT based distance learning: The African story. *The Electronic Library 21* (5), 476-486.
- CTA (2003) ICTs transforming Agricultural Extension? An e-discussion 20<sup>th</sup> August 25<sup>th</sup> September
- Esharenana E. A & Kpangban E (2010) Application of ICTs in Nigerian Secondary Schools
- Federal Republic of Nigeria (2006). Government in action. Available: http://www.nigeriafirst.org/article\_2090.shtml/accessed 29/11/2016
- Global Information Technology Report (2005). The Networked Readiness Index Rankings2005.ttp://www.weforum.org/pdf/Global\_Competitiveness\_Reports/Reports/gitr \_2006/rankings.pdfAccessed/13/11/2016
- Goshit, T. (2006). Nigeria's need for ICT: SP. 259 technology and policy in Africa. Available: http://ocw.mit.edu/NR/rdonlyres/Special-Programs/SP-259Spring-2006/891209EE-E63B-4617-BA9D-7635A63C754B/0/goshit.pdf/accessed/29/11/2016
- Nwagwu, W. & Ahanihe, I. I. (2006). Emerging Trends and Setbacks in e-Learning *Networks in Africa. Journal of Information Technology Impact* Vol. 6(2), 85100.
- Okebukola, P. (2004). E-learning in varsities, others underway, NUC boss lists strategies. *The Guardian* (12 October): 35, 39.
- Olakulehin, F. K. (2007). Information and communication technologies in teacher training and
- Olibie, E.I. (2008). Application of information and communication technology (ICT) in English language classroom. In Nigerian Journal of Teacher Education and Teaching. 5 (1) 17-23
- Oluwatay I.B & Aliyu A.A (2007). Gender Differentials in Information Communication Technologgies (ICTs) Usage in Rural Nigeria: A Case of Atisbo LGA of Oyo State. Journal of Rural Sociology Vol. 7, No.1&2, 27-68professional development in Nigeria. *Turkish Journal of Distance Education TODJE*, (1),
- Tedla, B A. 2012. Understanding the importance, Impacts and Barriers of ICT on Teaching and Learning in East African Countries. International Journal for e-learning Security (JeLS), Volume 2, Issues 3/4,
- U.N.D.P. Evaluation Office. (2001). Information communication technology for development, No 5, pp 1- 31
- UNDP. (2006). Information communication technologies and development. http://usdnhq.undp.prg/it4dev/Accessed/14/12/2016.

Education, Learning, Training & Development 3(2),102-116, 2022

Print ISSN: 2517-276X

Online ISSN: 2517-2778

Website: <u>https://bjmas.org/index.php/bjmas/index</u>

Published by European Centre for Research Training and Development UK

Yusuf, M.O. (2005). Information and communication education: Analyzing the Nigerian national policy for information technology. *International Education Journal* 6 (3), 316-321.