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ABSTRACT: In the previous papers, I have mentioned several times of HKLam Theory and 

their everyday usage but without the abstract mathematical proof. In order to remediate the 

flaws, I am now trying to proof the theory through both Tensor Algebra and Analysis as well as 

the statistical inference in this present paper. Indeed, people always say that mathematicians 

are linear animals or participate much in the subject of linear algebra while the British Scientist 

Newton observed a falling apple and discovered the gravity together with the development of 

calculus. In a similar case, my proof in the part of tensor algebra will be an analogy to the 

linear mapping, transformation etc while there are the corresponding corollary real physical 

life cases – 2 to 3 dimensional vectors calculus or even higher dimension of tensor analysis. 

Indeed, my proof will be based on the order two tensor but the HKLam theory may be extended 

up to nth order tensor but NOT applicable to the topic of the planned politics or even economics 

etc.The main aim is to show the proof of HKLam Theory by linear/Tensor algebra together with 

some applications in fluid dynamic and stress tensor field etc.  
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PROOF OF THE HKLAM THEORY 

1.1 Linear Mapping (Transformation)  

Theorem 1.1 [1] Let V and W be vector spaces. Let {v1,…,vn} be a basis of V, and let w1,…,wn be 

any arbitrary elements of W. Then there exists a unique linear mapping T: V → W such that 

  T(v1) = w1,…,T(vn) = wn. 

If furthermore, α1,…, αn are scalars, then 

  T( α1 v1+ … +  αn vn) =  α1 w1 + … + αn wn. 

Proof:  

Part A. Existence of the (linear) map – “T” (Assume the linearity first as I will prove immediately 

in the following (part B)). 

https://www.eajournals.org/
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Let V and W be vector spaces. Let {v1,…,vn} be a basis of V, and let {w’1,…,w’n} be the basis of 

W. Let T:V → W be a linear map that  

  T(v1) = w’1, T(v2) = w’2, … , T(vn) = w’n 

Then  α1 v1+ … +  αn vn = 0 iff  αi = 0 for i = 1,2, …, n 

  T(α1 v1+ … +  αn vn) = T(0) 

                 =  α1T( v1) + … +  αnT( vn) 

                 =  0T(v1) + … + 0T(vn)   

                 = 0w’1 + … + 0w’n 

                 = 0  

(N.B. [2] 1. For if {w’1, … , w’n} are linearly dependent, then by definition, one may find scalars 

λ1 ,…, λi that is not equal to zero such that  

   λ1w’1 + … + λiw’i + λi+1w’i+1… +  λnw’n = 0 

Then T( λ1v1 + … + λivi + λi+1vi+1+  λnvn) = 0 for λ1 ,…, λi not equal to zero and otherwise equals 

zero. Hence, we have non-zero elements in the kernel, says v = λ1v1 + … + λivi not equals to zero as 

λ1 ,…, λi not equal to zero.  

(But {v1, …, vn} is the base of V or if  

  λ1 v1 + … +  λn vn = 0 

then all  λi must be zero by the property that all vi s are linear independent for i = 1,2, …, n which 

obviously induce a contradiction with previous assumption λ1 ,…, λi not equal to zero). Thus, if 

kernel of T is zero, then the image vector {T(v1), … , T(vn)} can form a basis.  

Conversely, if {T(v1), … , T(vn)} forms the basis of W, then T(x) = 0  where x = (x1, …, xn) 

belongs to a vector space V and x = x1 v1 + … + xn vn with {v1, … , vn} as the basis of V 

    x1T(v1) + … + xnT(vn) = 0 

   T(x1 v1) + … + T(xn vn) = 0 

https://www.eajournals.org/
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   T( x1 v1 + … +  xn vn) = 0  

           T(x) = 0. 

Hence, we may have the following corollary: 

Corollary 1.2 [3] The image vectors{T(v1) , ..., T(vn)} can form a basis of V (i.e. dim(V) = dim(W) 

from the fact that dim V = dim Ker T + dim Im T and Ker T = {0}) if only if the kernel of 𝑇 is zero. 

(N.B. Detail proofs of the Kernel and Image of a Linear Map is out of the scope of the present paper 

and has been described on [1] p.59 – 63.) 

Part  B [1]: Linearity of the map – “T” 

Suppose v be an element of V and also  α1,…, αn be the unique scalars such that  

  v =  α1 v1+ … +  αn vn  

Suppose further that,  

  T(v) =  α1 w1 + … +  αn wn 

and one may have additional element v’ = γ1 v1 + … +  γn vn, then 

  v + v’ =  (α1+ γ1) v1 + … + (αn+ γn) vn. 

By definition, 

         T(v + v’) = (α1+ γ1) w1 + … + (αn+ γn) wn 

       =  α1 w1 +  γ1 w1 +… + αn wn + γn wn 

       = (α1 w1 + … +  αn wn) +  (γ1 w1 + … + γn wn) 

       = T(v) + T(v’) 

Let c be a scalar, then cv = c (α1 v1 + … + αn vn) 

Consider T(cv) = c α1 w1 + … + c  αn wn  

            = c (α1 w1 + … +  αn wn) 

            = c T(v) 

Hence, the map T is linear. 

https://www.eajournals.org/
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Part C [5]: Uniqueness of the linear map – “T”   

Let T: V → W be a linear map which satisfies T(vj) = wj for all j belongs to {1, … , n}. At the same 

time, suppose there is also another linear map S: V → W such that S(vj) = wj for all j belongs to 

{1, …, n}. It suffixes to show that the linear maps T = S. Otherwise, the uniqueness may turn out to 

be the problem in change of basis [4]. 

Let x = c1v1 + … + cnvn, then T(x) = T(c1v1 + … + cnvn) 

     = c1T(v1) + … + cnT(vn) 

     = c1w1 + … + cnwn 

     = c1S(v1) + … + cnS(vn) 

     = S(c1v1 + … + cnvn) 

     = S(x) 

Thus, this author has shown that for every x belongs to V, T(x) = S(x). Hence, T=S proving 

uniqueness of the original T that I have already established. 

1.2 Linear Combination & Regression 

Definition 1.2.1: Let V be an arbitary vector space, and let v1, … , vn be elements of V. Let 

x1, … ,xn be scalars. Any vector 𝑤 ∈ 𝑉 that can be expressed of the type  

   w = x1 v1 + … + xnvn 

is called a linear combination of vectors {v1, … , vn}. 

 

Now, consider a vector equation like the following: 

   x1 v1 + … + xn vk = b 

where v1, … , vk, b are vectors in ℝ𝑛and x1, x2, … , xk are unknown scalars and has the same 

solution set as the linear system with augmented matrix        

https://www.eajournals.org/
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𝑙 𝑙 . . . 𝑙
𝑣1 𝑣2 . . . 𝑣𝑘
𝑙 𝑙 . . . 𝑙

อ
𝑙
𝑏
𝑙
൩ 

whose  columns are the vi’s and the b’s.  

Corollary 1.2.2: For the vector b in ℝ𝑛, we may always express it as the linear combination of the 

basis {e1, e2, …, en}through vector equation where ei = (0, …,1, … 0) with the i-th coordinate 

equals to 1. 

Proof: It follows directly from the fact that vector b = (b1, … , bn) for some scalars bi  

where i = 1,2,… ,n 

Then b = b1 e1 + … + bn en. 

Corollary 1.2.3 [6]: In particular, the linear regression may be considered as the approximation of  

the vector 𝑏 ∈ 𝑊 through a suitable selection of combination coefficients or projection in terms of 

vector equation. 

 

Proof: By definition, b = b1 y1 + … + bkyk or b = (b1, b2, … , bk) 

ۉ

ۈۈ
ۇ

𝑦1
𝑦2
.
.
.
𝑦𝑘ی

ۋۋ
ۊ

 , where yi = 

ۉ

ۈۈ
ۇ

0
0
.
𝑦𝑖
.
ی0

ۋۋ
ۊ

  is the i-

th vector with only the i-th coordinate not equals to zero for some basis {y1, y2,…,yi,…,yn} , hence 

by considering linear regression as a special case of linear combination, one may always 

approximate b by the linear function like y = mTx + c or for multiple variables, one may have  

b =  (b’1, b’2, … , b’k) 

ۉ

ۈۈ
ۇ

𝑦1
𝑦2
.
.
.
𝑦𝑘ی

ۋۋ
ۊ

 + 

ۉ

ۈۈ
ۇ

𝑐1
𝑐2
.
.
.
𝑐𝑘ی

ۋۋ
ۊ

 for other approximated scalars b’i (N.B. one may need 

to choose these approximated scalars b’i indeed) not equals to the original scalars bi  

where I = 1, 2, … , k in the above b  = b’1y1 + b’2y2 + … + b’kyk with error terms (c1, c2, … , ck) is 

used to adjust for the fitting of the approximated one into the original b vector’s expression. i.e.  

   b =  b’1y1 + b’2y2 + … + b’kyk + c1 + c2 + … + ck. 

https://www.eajournals.org/
https://en.wikipedia.org/wiki/Bilinear_map
https://en.wikipedia.org/wiki/Bilinear_map
https://en.wikipedia.org/wiki/Bilinear_map
https://en.wikipedia.org/wiki/Bilinear_map
https://en.wikipedia.org/wiki/Bilinear_map
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Or in general, for any resulted vector 𝑤 ∈ 𝑊which is obtained from the space V through the linear 

mapping “T” to the space like W, we may have: 

   w = β0 + β1x1 + … + βnxn + ε for some basis {x1, x2, … , xn} in W and a 

vector  ε in W with some scalars βi where i = 1,2, … ,n.  

Indeed, one of the most famous case is the selection of dot product as the b’i s in the orthogonal 

base with positive definite scalar product and more general case. With reference to Gram-Schmidt 

orthogonalization process [1], p.103, p.123, for any given arbritrary basis {y1, y2,…,yk} of V, one 

may always select
ർ𝑏ሺ𝑖−1ሻ𝑦ሺ𝑖−1ሻ

𝑇 ,𝑏𝑖𝑦𝑖

ർ𝑏𝑖𝑦𝑖
𝑇,𝑏𝑖𝑦𝑖

as our b’i s such that  

b = y1 +
ർ𝑏1𝑦1

𝑇,𝑏2𝑦2

ർ𝑏2𝑦2
𝑇,𝑏2𝑦2

y2 + 
ർ𝑏2𝑦2

𝑇,𝑏3𝑦3

ർ𝑏3
𝑇𝑦3,𝑏3𝑦3

y3 + … + 
ർ𝑏ሺ𝑘−1ሻ𝑦ሺ𝑘−1ሻ

𝑇 ,𝑏𝑘𝑦𝑘

ർ𝑏𝑘
𝑇𝑦𝑘,𝑏𝑘𝑦𝑘

yk + Error terms ----------（*） 

where <b(i-1)y(i-1)
T , biyi> denotes the dot product between vectors b(i-1)y(i-1) and biyi for 

I = 1,2,…,k and error terms will be defined as: 

  ci = bi yi- 
ർ𝑏ሺ𝑖−1ሻ𝑦ሺ𝑖−1ሻ

𝑇 ,𝑏𝑖𝑦𝑖

ർ𝑏𝑖𝑦𝑖
𝑇,𝑏𝑖𝑦𝑖

yi 

The above result is defined as my dot product (of the orthogonal projection) regression. Certainly, 

one may develop some other kind of regression by using the ideas of geometric mean and ordinary 

least square like the prescribed dot product one etc. This author remarks that one may go a further 

step by using the recursive Gram-Schmidt orthogonalization process to obtain the orthogonal basis 

and perform another type of projection etc.  

 

 

 

 

https://www.eajournals.org/
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In Brief,  

1. given known values of bi s, one may find the corresponding b’i s by applying a suitable projection 

method; 

2. given values of b’i s and a known method of projection, one may find the respective bi s with the 

vice versa process of applying the projection in order to reconstruct those bi s. 

(N.B. Actually, you may consider the corollary 1.2.3 as a kind of projection etc as b’i s are selected 

by the users which technically forms a geometric projection. i.e. projects part of the vector b’s 

suitable values with b’i s or takes a proportion of the original values of bi s. Conceptually, this is just 

like the famous orthogonal projection [7]. Practically, we may use the set.seed command in JASP 

and R or machine learning in guessing the level/degree of b’i s etc required. They constitute a kind 

of philosophy. However, the computer stimulation of the vector projection or any computational 

tasks etc are NOT the focus of the present paper. The main aim of this paper has been described in 

the abstract.)  

1.3 Matrix (or Array) as a Linear Mapping 

Definition 1.3.1 [8] Let V’ and W’ be two vector spaces. Let {v1, v2, … , vn} be a basis for V’ and 

{w1, w2, …, wm} be a basis for W’. For any𝑣 ∈ 𝑉′ and any 𝑤 ∈ 𝑊′, denote by [v]V’ and [w]w’ their 

mX1 and nX1 coordinate vectors with respect to the two bases of V’ and W’ respectively. Let f: V’ 

→ W’ be a linear map. An mxn (i.e. m rows and n columns) matrix [f]v’w’ such that, for any𝑣 ∈ 𝑉′, 

    [f(v)]w’ = [f]v’w’[v]V’ 

is called a matrix of the linear map f with respect to the bases V’ and W’. 

Moreover, the resulted [f(v)]w’ is a vector of rank m. 

Theorem 1.3.1.2 A map f is linear if only if it has a matrix A and transform coordinates. 

“If” part: Assume that the mapping is linear, then according to [1], p.83 there exists a unique matrix 

A such that [f]v’w’ = [f]A; 

https://www.eajournals.org/
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“Only if” part: Assume there is a mxn matrix A, then we may construct a map f: V’ → W’ with the 

basis of V’ = n independent column vectors and the basis of W’ = m independent row vectors such 

that [f]v’w’ = [f]A. Then we may verify the map is linear like the case in the previous section. 

Obviously, the map also transforms coordinates. 

Corollary 1.3.1.3 For any matrix A, according to Theorem 1.3.1.2, there exists a unique linear map 

L such that L(x) = Ax and results a coordinate transformed vector b in the matrix equation form:  

     Ax = b 

By the theorems in section 1.1, the corollary 1.2.3 and the proof in Lam (March, 2020), one may 

have the following theory: 

Theorem 1.3.2 (HKLam Theorem) For any matrix equation Ax = b, one may express it as a linear 

transformation such that T: V → W. Then one may approximate (or project) the resulted vector 𝑏 ∈

𝑊 by selecting a suitable linear combination coefficients with some error terms. Furthermore,  by 

Lam (29 March, 2020) [9], one may also expand the projection or approximation by an expression 

with a series of recursive linear regression substitution.  

Proof: Follows directly from the  

1. Theorem 1.1 – existence, linearity and uniqueness of linear transformation, 

2. Corollary 1.2.3 – linear regression as an approximation/projection of the linear combination of 

the domain in linear map), 

3. Definition 1.3.1 – matrix equation as a kind of linear transformation; 

4. Theorem 1.3.1.2 – A map is linear iff it has a matrix A and transform coordinates; 

5. Corollary 1.3.1.3 – Given any matrix A, one may construct its linear map together with its its 

matrix equation and results its transformed coordinate vector b, b is then expressed as the linear 

combination or regression etc;  

https://www.eajournals.org/
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6. Lam (March, 2020) – the approximated regression of the domain in the matrix linear 

transformation can then be expressed as a series of recursive regression substitution. 

N.B. The theorem may be proved by contrapositive: Assume that Ax = b with 𝑏 ≠

𝑏′1𝑦1+. . . +𝑏′𝑛𝑦𝑛 + 𝑐1+. . . +𝑐𝑛. But by the assumption 𝑏′1𝑦1+. . . +𝑏′𝑛𝑦𝑛 + 𝑐1+. . . +𝑐𝑛 =

𝑏1𝑦1+. . . +𝑏𝑛𝑦𝑛. This implies 𝑏 ≠ 𝑏1𝑦1+. . . +𝑏𝑛𝑦𝑛 which obviously contradicts to the fact that Ax 

= b = b1y1 + … + bnyn !!!!!! Hence, one may always approximate or project vector “b” by the 

vector equation: b’1y1 + b’2y2 + … + b’nyn + c1 + … + cn with {c1, c2, … , cn} as the error terms or 

the linear regression to the combination. Suppose further that Ax = b, then in matrix form, one may 

have [1]: 

  

ۏ
ێ
ێ
ێ
ۍ
𝑎11 𝑎12 . . . 𝑎1𝑛
. . . . . .
. . . . . .
. . . . . .

𝑎𝑚1 𝑎𝑚2 . . . 𝑎𝑚𝑛ے
ۑ
ۑ
ۑ
ې

 

ۉ

ۈۈ
ۇ

𝑥1
𝑥2
.
.
.
𝑥𝑛ی

ۋۋ
ۊ

 = 

ۉ

ۈ
ۈ
ۇ

𝑏1
.
.
.
.
𝑏𝑚ی

ۋ
ۋ
ۊ

  

            =  

ۉ

ۈ
ۈ
ۈ
ۈ
ۇ

∑
𝑛

𝑗=1
𝑎1𝑗𝑥𝑗
.
.
.
.

∑
𝑛

𝑗=1
𝑎𝑚𝑗𝑥𝑗

ی

ۋ
ۋ
ۋ
ۋ
ۊ

 where bi = ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 𝑥𝑗  for I = 1,2,…,m 

But b = b1y1 + b2y2 + … +  bmym = (∑ 𝑎1𝑗
𝑛
𝑗=1 𝑥𝑗 ) y1 + (∑ 𝑎2𝑗

𝑛
𝑗=1 𝑥𝑗)y2 + … + (∑ 𝑎𝑚𝑗

𝑛
𝑗=1 𝑥𝑗)ym for 

some basis {y1, y2, … , ym} spans b. In other words,  

 b = b1y1 + b2y2 + … + bmym = (∑ 𝑎1𝑗
𝑛
𝑗=1 𝑥𝑗 ) y1 + (∑ 𝑎2𝑗

𝑛
𝑗=1 𝑥𝑗)y2 + … + (∑ 𝑎𝑚𝑗

𝑛
𝑗=1 𝑥𝑗)ym 

     = [ (∑ 𝑎′1𝑗
𝑛
𝑗=1 𝑥𝑗)  y1 + c1] + [(∑ 𝑎′2𝑗

𝑛
𝑗=1 𝑥𝑗)y2 + c2] + … + [(∑ 𝑎′𝑚𝑗

𝑛
𝑗=1 𝑥𝑗)ym + cm]  

      = b’1y1 + b’2y2 + … + b’mym + c1 + c2 +… + cm 

https://www.eajournals.org/


 

 

 

International Journal of Mathematics and Statistics Studies 

Vol.10, No.5, pp.1-14, 2022 

 Print ISSN: 2053-2229 (Print),  

                                                                                      Online ISSN: 2053-2210 (Online) 

10 

@ECRTD-UK: https://www.eajournals.org/                                                        

Publication of the European Centre for Research Training and Development -UK 

 

      = b’ + error term    where ( ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 𝑥𝑗)yi=( ∑ 𝑎′𝑖𝑗

𝑛
𝑗=1 𝑥𝑗)yi + ci for I = 

1, …, m 

Now, consider the approximated vector b’, one may get: 

b’ = (a’11, a’12, …, a’1n) 

ۉ

ۈۈ
ۇ

𝑦1
0
.
.
.
0 ی

ۋۋ
ۊ

 x + … + (a’m1, a’22, … , a’mn) 

ۉ

ۈ
ۈ
ۇ

0
0
.
.
.
𝑦𝑚ی

ۋ
ۋ
ۊ

 x 

     = [ (a’11, a’12, …, a’1n) 

ۉ

ۈۈ
ۇ

𝑦1
0
.
.
.
0 ی

ۋۋ
ۊ

 + … +  (a’m1, a’22, … , a’mn) 

ۉ

ۈ
ۈ
ۇ

0
0
.
.
.
𝑦𝑚ی

ۋ
ۋ
ۊ

 ] x 

     =[ 

ۏ
ێ
ێ
ێ
ۍ
𝑎′11𝑦1 𝑎′12𝑦1 . . . 𝑎′1𝑛𝑦1

. . . . . .

. . . . . .

. . . . . .
𝑎′𝑚1𝑦𝑚 𝑎′𝑚2𝑦𝑚 . . . 𝑎′𝑚𝑛𝑦𝑚ے

ۑ
ۑ
ۑ
ې

 ]x 

     Now consider the transpose of  

ۏ
ێ
ێ
ێ
ۍ
𝑎′11𝑦1 𝑎′12𝑦1 . . . 𝑎′1𝑛𝑦1

. . . . . .

. . . . . .

. . . . . .
𝑎′𝑚1𝑦𝑚 𝑎′𝑚2𝑦𝑚 . . . 𝑎′𝑚𝑛𝑦𝑚ے

ۑ
ۑ
ۑ
ې

, i.e.  

 

 

ۏ
ێ
ێ
ێ
ۍ
𝑎′11 𝑎′21 . . . 𝑎′𝑚1

. . . . . .

. . . . . .

. . . . . .
𝑎′1𝑛 𝑎′2𝑛 . . . 𝑎′𝑚𝑛ے

ۑ
ۑ
ۑ
ې

ۉ

ۈۈ
ۇ

𝑦1
𝑦2
.
.
.
𝑦𝑚ی

ۋۋ
ۊ

 x 

b’T = (A’Ty) x = WTx  where WT = (A’Ty) 

Now, by adding the error vector C to the above vector equation, one may further get: 

b’ + error term = (WTx)T + C = WxT + C. 

https://www.eajournals.org/


 

 

 

International Journal of Mathematics and Statistics Studies 

Vol.10, No.5, pp.1-14, 2022 

 Print ISSN: 2053-2229 (Print),  

                                                                                      Online ISSN: 2053-2210 (Online) 

11 

@ECRTD-UK: https://www.eajournals.org/                                                        

Publication of the European Centre for Research Training and Development -UK 

 

In terms of dot product projection (or equation (*)), we may get: 

 bi’ = 
ർ∑ 𝑎ሺ𝑖−1ሻ𝑗𝑥𝑗𝑦𝑖−1

𝑇𝑛
𝑖=1 ,∑ 𝑎𝑖𝑗

𝑛
𝑖=1 𝑥𝑗𝑦𝑖

ർ∑ 𝑎𝑖𝑗
𝑛
𝑖=1 𝑥𝑗𝑦𝑖

𝑇,∑ 𝑎𝑖𝑗
𝑛
𝑖=1 𝑥𝑗𝑦𝑖

 

Or one will get the wanted result that can connect the statistical model recursive vector-matrix 

equation as mentioned early in my paper named “Evaluation of the Weather-Influenza Pattern with 

a Regression Model Approximation to Casuality” etc. This completes the proof in my HKLam 

Theory or in general the so-called statistical modeling theory. From the above proof of linear 

regression is just a proportion of linear combination one may find that the converse is also true. This 

is because if one get a regression vector equation such as b’ = WTx + c and a set of data, say (x1,y1), 

(x2,y2), … , (xn,yn), together with the error term, one may get back the vector b. Then one may 

revese the previous proof procedure and finally get the proportional ratio between the coefficients 

of linear regression and combination or (a’i / ai)’s for i = 1,2, … ,n so as the matrix A etc. This 

writer will omit the reverse of the proof and leave it to those interested readers. 

N.B. Indeed, one may further compute the values of the error term C by considering the monic 

polynomials as a basis for the linear regression (/ combination) to approximate the vectors yis. 

Practically, one may have: 

  ci = ( ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 𝑥𝑗 - ∑ 𝑎′𝑖𝑗

𝑛
𝑗=1 𝑥𝑗  ) yi 

      = ( ∑ ൫𝑎𝑖𝑗 − 𝑎′𝑖𝑗൯
𝑛
𝑗=1 𝑥𝑗  ) yi 

      = ( ∑ ൫𝑎𝑖𝑗 − 𝑎′𝑖𝑗൯
𝑛
𝑗=1 𝑥𝑗  ) ( 𝑚𝑖𝑛∑ ൭𝑦𝑖 − 𝑓

⬚

ሺ𝑥𝑖ሻ൱

2

𝑛
𝑖=1  ) 

        where 𝑓
⬚

ሺ𝑥𝑖ሻis an approximation to𝑦𝑖 

If one selects the set of monic polynomial {1, x, x2, … , xn-1} or {f(xi)} for I =1, …, n as the basis 

for spanning 𝑓
⬚

ሺ𝑥𝑖ሻ, then one may get the following linear regression or combination: 

https://www.eajournals.org/
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   𝑓
⬚

ሺ𝑥𝑖ሻ = ∑ ൫𝑤𝑖𝑓ሺ𝑥𝑖ሻ൯
𝑛
𝑖=1  

To be precise,  

  ci =( ∑ ൫𝑎𝑖𝑗 − 𝑎′𝑖𝑗൯
𝑛
𝑗=1 𝑥𝑗) ( 𝑚𝑖𝑛 ቀ∑ ቀ𝑦𝑖 − ∑ 𝑤𝑖𝑘𝑓𝑖𝑘ሺ𝑥ሻ

𝑙
𝑘=1 ቁ𝑛

𝑖=1 ቁ
2

) 

and our goal is to minimize 

  ቀ∑ ቀ𝑦𝑖 − ∑ 𝑤𝑖𝑘𝑓𝑖𝑘ሺ𝑥ሻ
𝑙
𝑘=1 ቁ𝑛

𝑖=1 ቁ
2
 

The method of finding the minimum point may be by using gradient descent etc just as mentioned 

in my paper “A Saddle Point Finding Method for Lorenz Attractor through Business Machine 

Learning Algorithm” etc. 

N.B. It is true that there is a Johnson Lindenstrauss Lemma for the random matrix which may be 

used for high dimensional space mapping to the lower one, however, this is not the focus of the 

present section as its aim is to prove my HKLam theory. The lemma may be related to the distance 

between data during the analysis in the topic of machine learning. This author will leave such 

lemma and the usage for those interested readers in their further study. I should also note that there 

is a need considering the order of those data points or vectors in the daily usage of the HKLam 

theory. Indeed, two different types of result may be given. 

N.B. As we may have the Moore-Penrose inverse of a given matrix A belongs to the ℝ𝑚𝑥𝑛,one may 

get the corresponding singular value decomposition (SVD) and hence get the pseudo-inverse. Once 

we have get the inverse, we may find the solution x to the matrix equation Ax = b with the linear 

least-squares [12]: 

where the modified x = A+ (Regression_Approximation) + (I – A+A)w   

and (Regression_Approximation) is well defined in corollary 1.2.3. 

 

 

https://www.eajournals.org/
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Theorem 1.3.3 The converse of the theorem 1.3.2 or HKLam Theory is also true. 

Proof:  Let β0 + β1x1 + … + βnxn + ε be the regression approximation of the matrix linear 

transformation of Ax = b. Then by the definition of inverse to a vector x, we may have [10]: 

   x-1 = 
1

ฮ𝑥ฮ
2x  (since the inner product of < x x-1 > =1) 

Hence, we may have  A’ =  ( β0 + β1x1 + … + βnxn + ε)x-1 

      = ( β0 + β1x1 + … + βnxn + ε) (
1

ฮ𝑥ฮ
2x) 

      =  (x1b’1 + x2b’2 + … + xnb’n + c1 + c2 + … + cn)  (
1

ฮ𝑥ฮ
2x) 

      =  (x1 b1 + … + xn bn)  (
1

ฮ𝑥ฮ
2x) 

      = A   

(where the accuracy of A’ or A depends completely on the precision of ε that we have taken). 

CONCLUSION 

In a nutshell, this author has proved the HKLam Theory (both the “if” part and the “only if” part) by 

the elementary or basic linear algebra. It is no doubt that the theory has its extension for the tensor 

algebra and tensor analysis parts and has plenty of applications in physics and astronomphy etc. 

This author will left those discussions in the following series of the paper together with another one 

about its direct daily usage such as the real numerical data application of oral cavity teeth curvature 

in the field of 3D teeth modeling or even the controversial 3D cognitive brain signal input/output 

into human physical mind etc.  
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